Showing posts with label accelerometer. Show all posts
Showing posts with label accelerometer. Show all posts

Friday, November 1, 2024

An IMU designed specifically for drones, with multiple sensors integrated

 



Sensors are the core components of drone flight control systems, which can help drones achieve multiple functions such as attitude control, navigation, flight control, etc.

A basic drone needs to have characteristics such as stability, accuracy, low power consumption, and environmental perception. We currently have an IMU ER-MIMU-16 that perfectly meets these requirements.

**Multiple high-performance sensor integration**

Most IMUs only have built-in gyroscopes and accelerometers. Our IMU integrates sensors such as gyroscopes, accelerometers, magnetometers, and barometers (altimeters), which are very suitable for drones.

Gyroscope: dynamic measurement range: ±450º/s, bias instability :0.3º/h;

Accelerometer: dynamic measurement range: ±30g, bias instability: 10ug;

Gyroscopes and accelerometers provide the angular velocity and acceleration of the drone. These data can be calculated to obtain information such as the drone's attitude, speed, and displacement.

Magnetometer: dynamic measurement range ±2.5Gauss, can measure the strength and direction of the magnetic field, and provide the magnetic north direction.

Barometer: pressure range 450~1100mbar, by measuring atmospheric pressure, the data provided can assist the drone in navigation, rise to the required height, and accurately estimate the ascent and descent speeds.

**Lightweight design, easy to install**

This IMU has a volume of 47×44×14mm, a thickness of only 14mm, and a weight of 50g. It can be easily installed in various drones.

**SPI communication interface**

This type of communication method has a high data transmission rate and can perform high-speed data communication. It can also send and receive data at the same time, doubling the efficiency.

If you are interested in this and would like to know its data and price

You can click to view detailed information and then send an email inquiryhttps://www.ericcointernational.com/inertial-measurement-units/low-cost-inertial-measurement-unit.html

You can also take a screenshot and click on the email to ask for detailed information immediately: ericco188@ericcointernational.com 

Wednesday, October 25, 2023

Is Tilt Sensor an Accelerometer?

 


The tilt sensor is actually an application of the acceleration sensor.

Tilt sensors and accelerometers are different in concept, and inclination sensors are tools used to measure various angle changes. Acceleration sensor is a device that can measure acceleration force.

They work differently, and the theory behind inclination sensors is based on Newton's second law, which is actually the principle that accelerometers can measure acceleration at rest. For example, the ER-TS-12200-Modbus wireless tilt sensor can directly measure the carrier tilt angle when it is stationary, with ultra-low power consumption, small size, high performance and other characteristics, suitable for industrial sites, dangerous houses, ancient buildings, civil engineering, various tower tilt deformation and other needs for remote real-time monitoring and analysis. The accelerometer is composed of an upper capacitor, a middle capacitor plate (movable) and a lower capacitor plate. When the acceleration reaches a certain value, the middle capacitor plate will move, and the distance from the upper and lower capacitor plates will change, and the upper and lower capacitors will therefore change. The capacitance change is proportional to the acceleration. After the output voltage is digitally processed, the digital signal is output.

Their application scenarios are not the same, tilt sensor as a detection tool, it has become a bridge erection, railway laying, civil engineering, oil drilling, aviation and navigation, industrial automation, intelligent platform, machining and other fields of indispensable important measuring tools.

Accelerometers can be used in steel mast structures, bridges or building structures. It can also be used to protect hard drives from damage, as well as in medical and sports equipment, cameras and camcorders, smartphones, remote controls, controllers and navigation systems.

If you want to learn more about tilt sensors or buy

Please contact me in the following ways:

Email: info@ericcointernational.com

Whatsapp: 173 9198 8506




 

Tuesday, October 17, 2023

Is a Tilt Sensor the Same as as an Accelerometer?

 Different concept

Tilt sensor is a tool for measuring various angle changes. It is usually divided into single axis, dual axis, wireless transmission tilt sensors, etc.

Acceleration sensor is a device that can measure acceleration force. The accelerating force is the force that acts on an object as it accelerates, just like the Earth’s gravity, which is gravity. The accelerating force can be a constant, like g, or it can be a variable. There are two kinds of accelerometers: one is an angular accelerometer, which is modified by a gyroscope (angular velocity sensor). The other is a linear accelerometer.

Different working principles

Tilt sensors are based on Newton’s second law: according to the basic principles of physics, inside a system, velocity cannot be measured, but acceleration can be measured. If the initial speed is known, the line speed can be calculated by integrating, and then the linear displacement can be calculated, so it is actually an acceleration sensor using the principle of inertia. For example, the ER-TS-3168CU tilt sensor, which uses the principle of inertia and built-in accelerometer, can measure the angular speed at rest, and can calculate the line speed through integration, which can accurately compensate and correct the temperature error and linear error. It has the characteristics of high precision, small size, high packaging process, strong impact resistance, anti-vibration ability, built-in anti-RF, anti-electromagnetic interference circuit, etc., especially suitable for the application of underground trenchless machinery and other harsh industrial environment. When the tilt sensor is stationary, that is, there is no acceleration in the side and vertical directions, then there is only gravity acceleration acting on it, and the angle between the vertical axis of gravity and the sensitive axis of the acceleration sensor is the tilt angle. The ER-TS-12200-Modbus wireless inclination sensor can directly measure the inclination angle of the carrier when it is stationary. It has the characteristics of ultra-low power consumption, small size and high performance, and is suitable for remote real-time monitoring and analysis of the needs of industrial sites, dangerous houses, ancient buildings, civil engineering, and various towers’ inclination deformation.

The working principle of the accelerometer: The accelerometer is composed of an upper capacitor, a middle capacitor board (movable), and a lower capacitor board. When the acceleration reaches a certain value, the middle capacitor plate will move, and the distance from the upper and lower capacitor plates will change, and the upper and lower capacitors will therefore change. The capacitance change is proportional to the acceleration. After the output voltage is digitally processed, the digital signal is output.

Different application areas

As a kind of detection tool, inclination sensor has become an indispensable and important measurement tool in bridge erection, railway laying, civil engineering, oil drilling, aviation and navigation, industrial automation, intelligent platform, machining and other fields.



Accelerometers can be used in steel mast structures, bridges or building structures. It can also be used to protect hard drives from damage, as well as in medical and sports equipment, cameras and camcorders, smartphones, remote controls, controllers and navigation systems.

Conclusion: The inclination sensor is the MCU, MEMS accelerometer (MEMS accelerometer is only one component of the inclination sensor integrated circuit board), analog-to-digital conversion circuit, and communication unit are all integrated on a very small circuit board, which can directly output angle tilt data, so that people can use it more conveniently.

Saturday, September 25, 2021

How Does A Quartz Flexible Accelerometer Work?

 

Quartz flexible pendulum accelerometer is a force feedback pendulum accelerometer developed on the basis of liquid floating pendulum accelerometer. The main difference between the two is that the detection quality of the quartz flexible accelerometer is not floating, but is elastically connected to the flexible beam support, introducing elastic moment, so it has higher accuracy, strong anti-interference ability, large measurement range, and overload capacity.

The performance of flexible materials directly affects the performance of the accelerometer, and the materials that can be used as a flexible pendulum are mainly metal and quartz. The traditional liquid-floating pendulum accelerometer pendulum adopts metal materials. The thermal expansion coefficient of quartz is much smaller than that of steel, and the material performance is better than metal. In addition, quartz has high fatigue strength and low hysteresis of the material itself, which is very suitable for the pendulum of accelerometer. As soon as the quartz flexible accelerometer came out, it quickly replaced the liquid-floating accelerometer and became an indispensable key component in the inertial navigation and guidance system.

At present, quartz flexible pendulum accelerometers have been widely used in the measurement of various linear acceleration, vibration acceleration, speed, distance, angular velocity, angular displacement and other parameters, and are used in satellite microgravity measurement systems, high-precision inertial navigation systems, and rock-based drilling and oil drilling, continuous inclinometer systems, launch vehicles, ballistic missiles, spacecraft and other military and civilian fields.

High-precision IMU is coming to help in the fields of land, sea and air

  High-precision IMU is now widely used in many fields of sea, land and air. It can provide real-time and accurate information on the carrie...