Monday, October 30, 2023

How to Distinguish North Finder and Theodolite?



 In the inertial navigation industry, these two instruments It is often used. Let’s talk about the difference between the North Finder and theodolite today.

The north finder is also called the gyro north finder, which is a high-precision dual-axis dynamic tuned gyro. The purpose is to find the true north direction value of the object. Ericco’s ER-MNS-05 (0.25°/1°), it can also be combined. Acceleration is used to measure and correct the horizontal angle, which is mainly used in the fields of borehole directional instrument, drilling equipment control and measurement, marine survey, three-dimensional scanner, radar, antenna, military vehicle and so on. The principle is to determine the true north direction value of the attached carrier autonomously by measuring the angular velocity of the earth’s rotation, without being disturbed and affected by external magnetic fields or other environments. In addition, it can also be combined with acceleration for horizontal angle measurement and correction.

1. Analytical fast north finding principle

The analytical fast north finding is mainly composed of inertial sensor components, horizontal turntable, base (including shock absorber), control circuit and computer. The inertial sensor component is mainly composed of a flexible gyroscope and an accelerometer meter, which is used to sense the angular velocity of the earth’s rotation and the acceleration of gravity.

2. Decomposition of the angular velocity of the earth’s rotation

The earth’s rotation angular velocity (15.0411 degrees/h, 7.29213101e-5rad/s) vector is parallel to the earth’s axis, and the north direction is positive. At any point P on the earth’s surface, the rotation angular velocity at that point can be decomposed into a vertical component and a horizontal component, which is the latitude value of point P. The true north position refers to the direction of the horizontal component of the earth’s rotation angular velocity.

3. The principle of gyro north finding in the horizontal state of the platform

The selected flexible gyro for north-seeking azimuth vertical reference is a dual-axis rate gyro, which has two orthogonal input X, Y and two corresponding output shafts, and the rotor axis is the Z axis. Ericco’s MEMS gyroscope ER-MG2-100 is used for north finding, and the built-in IMU is used for inclination measurement and azimuth calculation.  In order to eliminate the influence of the vertical component, it is always desired that the XY axis of the gyro is in the horizontal plane (or as close as possible to the horizontal state). At this time, the horizontal component of the ground speed sensitive to the two axes is related to the north-seeking angle.

Theodolite is a measuring instrument designed to measure horizontal and vertical angles based on the principle of angle measurement. Its function is to accurately measure the horizontal and vertical angles of the measuring object. It is mostly used in many fields such as construction, road and bridge construction. 

If you are interested in this north finder, you can leave me a message or send a quote and I will send you the price and technical description.

contact us:

Email: info@ericcointernational.com

WeChat: 13992884879

WhatsApp: 13630231561

Sunday, October 29, 2023

What Does IMU Mean for A Drone?


The full name of “unmanned aircraft” is unmanned aircraft, which is operated by radio remote control equipment and self-provided program control devices, or by the on-board computer fully or intermittently autonomous operation. In order to make the UAV fly perfectly, IMU(Inertial Measurement Unit), gyroscope stabilization and flight controller technology are essential.
The flight control of UAV is composed of main control MCU and inertial measurement module IMU. IMU provides the original sensor data of the aircraft’s attitude in space, and the data of the aircraft is generally provided by the gyroscope sensor/acceleration sensor/electronic compass. Gyroscopic stabilization technology is one of the most important components, allowing the drone to fly super-smoothly even in strong winds and gusts. This smooth flight allows us to take fantastic aerial views of the beautiful planet. With excellent flight stability and waypoint navigation, the UAV can generate high-quality 3D photogrammetry and liDAR images. The latest drones use an integrated head, which also includes built-in gyroscopic stabilization technology, so that the on-board camera or sensor has little to no vibration. This allows us to capture perfect aerial film and photographs. In order to meet the requirements of UAV equipment, the gyroscope installed in MIMU-02 not only adopts an advanced differential sensor design, which can eliminate the influence of linear acceleration and work in extremely harsh environments in the presence of shock and vibration, It also has a measurement range of 400 degrees/second and a deviation instability of 0.01°/hour. Able to measure angular velocity up to ±400°/s and has a digital output protocol compliant with Mode 3 SPI. Angular rate data is represented as 24-bit words.
The application of IMU in UAVs is not limited to attitude control and flight stability. It can also be used with other sensors such as GPS (Global Positioning System) and magnetometers to provide more accurate navigation and positioning information. At the same time, IMU can also be used for UAV attitude estimation, motion detection, obstacle avoidance and other functions, improve the autonomy and safety of the UAV, provide key data for the control and navigation of the UAV, so that the UAV can efficiently perform various tasks. The application of IMU will vary depending on the design and use of different types of UAVs, but whether it is fixed wing, multi-rotor or vertical take-off and landing and conversion UAVs, IMU is the core to achieve its flight control and navigation.
If you want to know more about IMU, please click the link below
Email: info@ericcointernational.com
Whatsapp: 13630231561

What is a Tilt Sensor Used for?



 Tilt sensors are used in a variety of applications to measure angles. For example, high-precision laser instrument level, engineering machinery equipment leveling, long-distance ranging instruments, high-altitude platform safety protection, orientation satellite communication antenna elevation measurement, ship navigation attitude measurement, shield pipe application, dam detection, geological equipment tilt monitoring, artillery barrel initial launch angle measurement, radar vehicle platform detection, satellite communication vehicle attitude detection and so on.

Application example

Used in tower cranes

The inclination sensor is the main part of the anti-overturning monitoring instrument of tower crane. The function of the inclination sensor is to measure the angle of the tower tilt in real time. Since the tilt angle at the top of the tower is very small, the sampling frequency of the tilt sensor should be within the range of 0.5-10Hz, the measurement accuracy is higher than 0.05 degrees, and the noise caused by the vibration of the tower should be filtered out to ensure reliable communication and accurate judgment. The accuracy of the ER-TS-3160VO Voltage Single Axis Tilt Meter is 0.01 degrees, which is obviously higher than 0.05 degrees, and it is suitable for the tilt monitoring in this case.

If you want to learn more about tilt sensors or buy

Please contact me in the following ways:

Email: info@ericcointernational.com

Whatsapp: 173 9198 8506

Thursday, October 26, 2023

How to choose the right IMU?


Choosing the right product is not an easy task and we need to consider many aspects. Some of the aspects we have to consider when choosing an IMU are performance, underlying technology, SWaP (size, weight and power) and cost.

Additionally, another important factor for drones is the robustness of the IMU. In harsh drone applications, vibrations can reach very high levels and varying temperatures. Therefore, a drone’s IMU needs to be highly rugged to withstand harsh environments.

Advantages of having the right inertial measurement device

Rigorous applications such as drones require extremely stable and high-performance IMUs. An IMU with good performance, vibration robustness, and temperature stability will improve UAV flight operations. Accurate steering is easier to achieve even in high-vibration situations. In order to meet the requirements of UAV equipment, the ER-MG2-300/400 gyroscope placed in ER-MIM-02 not only adopts an advanced differential sensor design, it can eliminate the influence of linear acceleration and survive the impact in extremely harsh environments. It operates under vibration conditions and has a measurement range of 400 degrees/second and a deviation instability of 0.01°/hour. Able to measure angular velocity up to ±400°/s and has a digital output protocol compliant with Mode 3 SPI. Angular rate data is represented as 24-bit words. If you are interested in our products, please click the link below to learn more.

👇👇👇👇👇👇

More information:

Web:


https://www.ericcointernational.com/inertial-measurement

Email: info@ericcointernational.com

Whatsapp: 13630231561

What are the Three Types of Tilt Sensor?

 


There are many types of tilt sensors, but they can be classified into three broad categories.

1. Tilt sensors can be divided into two types: wireless and wired inclination sensors according to the way of data transmission.

1.1 Wireless inclinometers: Common wireless inclination sensors include NB-IoT wireless inclinometer sensors and LORO wireless inclinometer sensorss. These sensors transmit tilt signals via wireless communication technology without cable connections, making them highly flexible. The main advantages of wireless tilt sensors are their flexibility and convenience. Since no wiring is required, the sensor can be easily installed anywhere it is needed, without considering the laying of cables. In addition, wireless sensors also have the advantages of high mobility, easy expansion and maintenance. What is wireless transmission, for example, ER-TS-12200-Modbus is a wireless inclinometer sensors, it does not need to use traditional cables to transmit inclination signals, but uses lithium battery power supply, through Bluetooth and ZigBee wireless transmission of inclination data. This wireless digital signal transmission method eliminates the tedious wiring and noise interference caused by long cable transmission. However, wireless sensors also have some disadvantages, such as signal quality may be affected by radio interference, and signal stability and reliability may not be as good as wired sensors. Wireless inclinometer sensors can be widely used in bridge buildings, transmission tower/signal tower tilt, dangerous buildings, ancient buildings, warehouse shelves, smart town, smart lighthouse, fan tower tilt monitoring and other scenes.

1.2 Wired inclinometer sensors: It usually uses RS485 bus or other similar bus protocols to transmit inclination signals. RS485 is a serial communication protocol widely used in the field of industrial automation, which has the advantages of noise suppression and high signal quality. The main advantage of the wired inclinometer sensors is that the signal stability is high, and the signal quality is not easy to be disturbed because of the wired transmission mode. In addition, wired sensors have a long service life, lower maintenance costs, and a lower failure rate. However, this sensor also has some disadvantages, such as the need to lay cables, high requirements for the field environment, may exist in some application scenarios wiring difficulties. The wired inclinometer sensors can be widely used in buildings, Bridges, DAMS, shield pipe jacking, rail transit, high-rise buildings, slope monitoring and other scenarios.

2. According to different working principles, tilt sensors can be divided into static and dynamic inclinometer sensorss.

2.1 Static inclinometer sensors: It is mainly used to measure the static tilt Angle of objects, such as the tilt monitoring of Bridges, dangerous buildings, power towers and other structures. ER-TS-3160VO is a static inclination sensor, which can measure the tilt Angle of the object in the static state, and can be used to check the tilt Angle of Bridges, DAMS, and monitor the Angle of various construction machinery. It has the characteristics of small size, strong impact and vibration resistance.

2.2 Dynamic inclination sensor: It is suitable for measuring the tilt Angle of an object in a dynamic environment, such as dynamic balance control in the aerospace and automotive industries.

3.According to the different measurement range, the inclination sensor can be divided into single-axis, dual-axis and three-axis inclination sensors. A single-axis inclination sensor can only measure the tilt Angle of an object on one plane, a two-axis tilt sensor can simultaneously measure the tilt Angle of an object on two planes, and a three-axis tilt sensor can simultaneously measure the tilt Angle of three dimensions.

If you want to learn more about tilt sensors or buy

Please contact me in the following ways:

Email: info@ericcointernational.com

Whatsapp: 173 9198 8506

How to choose an inertial measurement unit (IMU) for your drone application?



An inertial measurement unit (IMU) is an electronic device that uses accelerometers and gyroscopes to measure acceleration and rotation and can be used to provide position data.

IMUs are an important component of unmanned aerial systems (UAVs, UAS, and drones) and common applications include control and stabilization, guidance and correction, measurement and testing, and mobile mapping.

Raw measurements output from an IMU (angular rate, linear acceleration, and magnetic field strength) or AHRS (roll, pitch, and yaw) can be fed into devices such as an inertial navigation system (INS) to calculate relative position, direction, and speed to help UAV navigation and control.

There are many types of IMUs, some of which incorporate magnetometers to measure magnetic field strength, but the four main technology categories for drone applications are: silicon MEMS (microelectromechanical systems), quartz MEMS, FOG (fiber optic gyroscopes), and RLG (Ring Laser Gyroscope).

Silicon MEMS IMUs are based on tiny sensors that measure the deflection of a mass due to motion, or the force required to hold the mass in place. They typically have higher noise, vibration sensitivity, and instability parameters than FOG IMUs, but as technology continues to advance, MEMS-based IMUs are becoming more accurate.

MEMS IMUs are well suited for small UAV platforms and high-volume production units because they can often be manufactured at smaller size and weight and at lower cost.

The FOG IMU uses solid-state technology based on a beam of light propagated through a coiled optical fiber. They are less sensitive to shock and vibration and have excellent thermal stability, but are susceptible to magnetic field interference. They also offer high performance in important parameters such as angular random walk, bias offset error and bias instability, making them ideal for mission-critical UAV applications such as extremely precise navigation.

The higher bandwidth also makes the FOG IMU suitable for high-speed platforms and stable. They are larger and more expensive than MEMS-based IMUs and are typically used on large UAV platforms.

The RLG IMU uses a similar technical principle to the FOG IMU, but uses a sealed ring cavity instead of an optical fiber. They are generally considered the most accurate option, but are also the most expensive IMU technology and are often much larger than alternatives.

Quartz MEMS IMUs use a one-piece inertial sensing element micromachined from quartz, driven by an oscillator to vibrate at precise amplitudes. The vibrating quartz can then be used to sense angular rate, producing a signal that can be amplified and converted into a DC signal proportional to the angular rate. These factors make it ideal for inertial systems designed for space- and power-constrained UAV environments.

More information:

Website: https://www.ericcointernational.com/inertial-measurement-units

Email: info@ericcointernational.com

WeChat: 13630231561

Wednesday, October 25, 2023

Is Tilt Sensor an Accelerometer?

 


The tilt sensor is actually an application of the acceleration sensor.

Tilt sensors and accelerometers are different in concept, and inclination sensors are tools used to measure various angle changes. Acceleration sensor is a device that can measure acceleration force.

They work differently, and the theory behind inclination sensors is based on Newton's second law, which is actually the principle that accelerometers can measure acceleration at rest. For example, the ER-TS-12200-Modbus wireless tilt sensor can directly measure the carrier tilt angle when it is stationary, with ultra-low power consumption, small size, high performance and other characteristics, suitable for industrial sites, dangerous houses, ancient buildings, civil engineering, various tower tilt deformation and other needs for remote real-time monitoring and analysis. The accelerometer is composed of an upper capacitor, a middle capacitor plate (movable) and a lower capacitor plate. When the acceleration reaches a certain value, the middle capacitor plate will move, and the distance from the upper and lower capacitor plates will change, and the upper and lower capacitors will therefore change. The capacitance change is proportional to the acceleration. After the output voltage is digitally processed, the digital signal is output.

Their application scenarios are not the same, tilt sensor as a detection tool, it has become a bridge erection, railway laying, civil engineering, oil drilling, aviation and navigation, industrial automation, intelligent platform, machining and other fields of indispensable important measuring tools.

Accelerometers can be used in steel mast structures, bridges or building structures. It can also be used to protect hard drives from damage, as well as in medical and sports equipment, cameras and camcorders, smartphones, remote controls, controllers and navigation systems.

If you want to learn more about tilt sensors or buy

Please contact me in the following ways:

Email: info@ericcointernational.com

Whatsapp: 173 9198 8506




 

High-precision IMU is coming to help in the fields of land, sea and air

  High-precision IMU is now widely used in many fields of sea, land and air. It can provide real-time and accurate information on the carrie...