Tuesday, November 14, 2023

Application of high-precision inertial navigation IMU module in surveying and mapping


With the rapid development of science and technology, high-precision inertial navigation IMU modules are increasingly used in the field of surveying and mapping. This advanced technology not only improves the accuracy and efficiency of surveying and mapping, but also greatly promotes the development of surveying and mapping science.

First of all, one of the main applications of high-precision inertial navigation IMU modules in surveying and mapping is aerial surveying and mapping. Aerial surveying and mapping play an important role in geographic information systems (GIS), and high-precision inertial navigation IMU modules can provide important data such as aircraft attitude, position and speed information. By carrying this module, aerial surveying and mapping can achieve high-precision positioning and three-dimensional modeling of the earth's surface, providing reliable data support for urban planning, traffic management, environmental protection and other fields.

Secondly, high-precision inertial navigation IMU modules are also widely used in ground surveying and mapping. Ground surveying and mapping are mainly used for drawing maps, measuring surface morphology and surveying regional resources. The high-precision inertial navigation module IMU can obtain the position coordinates, attitude angle, speed and other information of the measurement vehicle in real time, thereby improving the accuracy and reliability of surveying and mapping data. Whether it is road surveying in urban construction planning, or land surveying and resource assessment, high-precision inertial navigation IMU modules can play an important role.

In addition to being widely used in two-dimensional surveying and mapping, high-precision inertial navigation IMU modules can also play an important role in three-dimensional surveying and mapping. With the continuous advancement of 3D technology, people's demand for 3D models of landforms, buildings, resources, etc. is increasing. The high-precision inertial navigation IMU module can provide precise position and attitude data for three-dimensional surveying and mapping, thereby achieving high-precision three-dimensional modeling of complex landforms and buildings. This has played an important role in promoting urban planning, architectural design, cultural relics protection and other fields.

In addition to the above application fields, high-precision inertial navigation IMU modules also play an important role in ocean surveying and mapping. Marine surveying and mapping is mainly used for seabed landform survey, marine resource assessment and navigation safety. The inertial navigation IMU module can cooperate with equipment such as sonar depth sounders to provide accurate position and attitude information of the ship for accurate charting and research on seabed landforms. In engineering fields such as submarine pipelines and offshore oil development, high-precision inertial navigation IMU modules can also provide reliable data support for engineering surveying and mapping.

The ER-MIMU-01 and ER-MIMU-05 developed by Ericco use high-quality and reliable MEMS accelerometers and gyroscopes. RS422 communicates with the outside. The baud rate can be flexibly set between 9600~921600, and the user needs to be set through the communication protocol. communication baud rate. Equipped with X, Y, Z three-axis precision gyroscope, X, Y, Z three-axis accelerometer, with high resolution, it can output the original hexadecimal complement of X, Y, Z three-axis gyroscope and accelerometer through RS422 code data (including gyroscope hexadecimal complement) numerical temperature, angle, accelerometer hexadecimal temperature, acceleration hexadecimal complement); it can also output gyroscope and accelerometer data that have been processed by underlying calculations Floating point dimensionless values, whether it is aviation, ground or ocean surveying and mapping, can achieve a more accurate and efficient surveying and mapping process through the high-precision inertial navigation IMU module. If you want to know more about IMU products, you can click on the link below to learn more.

Web:https://www.ericcointernational.com/inertial-measurement-units

Email: info@ericcointernational.com

Whatsapp: 13630231561

WeChat:13992884879



Monday, November 13, 2023

Application of Tilt Sensor in Railway Monitoring



 Tilt sensors are widely used in many fields. Today we mainly look at the application of tilt sensors in railway monitoring.

The train is a special means of transport running on the railway track. Its use environment is complex and changeable, and it is often affected by various factors such as wind, snow, earthquake, debris flow, landslide, tunnel foreign matter, geological mutation, etc. It is easy to cause deformation of the railway track and be covered by foreign matter, which seriously threatens the safety of the train. Ericco design and production of the tilt sensor ER-TS-3160VO maximum measurement accuracy +0.01°, not only can accurately measure the inclination of the track, shape, but also real-time monitoring of the tilt of the environment around the track, especially in some places less traveled, in advance to make a preventive alarm, to avoid the occurrence of major accidents.

If you want to learn more about tilt sensors or buy tilt sensors

Please contact me in the following ways:

Email: info@ericcointernational.com

Whatsapp: 173 9198 8506

Sunday, November 12, 2023

Application of Tilt Sensor in Medical Device


 

Tilt sensors are widely used in medical instruments and human body detection.

The tilt sensor is installed in the control handle of the operating bed, and the motor drive process is controlled by the movement of the control handle in the direction of roll and pitch to achieve accurate control of the tilt angle of the operating vehicle. In addition, it has a wide range of applications in rehabilitation beds, automatic wheelchairs and other aspects.

In the application of medical devices, a small field failure problem is a major event related to the life and health of patients. The ever-changing tilt sensor technology can provide higher reliability, longer service life and higher accuracy, which is more deeply applied to medical devices. For example, our wireless ER-TS-12200-Modbus tilt sensor can be applied in medical devices, its accuracy is very high, can reach 0.001°, can achieve accurate control of medical devices.

If you want to learn more about MEMS tilt sensors or buy

Please contact me in the following ways:

Email: info@ericcointernational.com

Whatsapp: 173 9198 8506

What Does an Accelerometer do in an Airplane?

Quartz accelerometer is widely used in flight control system. It mainly relies on its high precision and high stability to realize the functional design of navigation, control and safety system.

1. Navigation system

As an important part of navigation system, quartz accelerometer is mainly used to measure the acceleration, speed and altitude of aircraft. Based on its high precision and strong stability, the quartz accelerometer can provide high-precision positioning and navigation information for aircraft and improve flight safety performance. At the same time, quartz accelerometers can be used in combination with other sensors such as gyroscopes to achieve more accurate aircraft positioning and navigation. For example, ER-QA-03C is specially designed for the aviation field, its size is 18.2X23mm, bias repeatability is 15-80μg,scale factor repeatability is 15-80 PPM and class II non-linearity repeatability is 20 to 50μg/g2.

2. Control system

The quartz accelerometer is used in the control system to monitor the attitude, angular velocity and acceleration of the aircraft. Based on its high precision and fast reaction speed, the quartz accelerometer can detect the status and behavior of the aircraft in real time, achieve fast response and control, and improve flight safety and stability.

 

3. Security system

Quartz accelerometers are also widely used in safety systems, mainly for detecting and preventing turbulence and abnormal behavior of aircraft. Based on its high precision and fast reaction speed, the quartz accelerometer can detect the acceleration change and turbulence of the aircraft in real time, and take corresponding measures in advance to avoid the occurrence of accidents.

Quartz accelerometer has been widely used in the field of flight control abroad. Its high precision and strong stability provide important support and guarantee for the design and development of flight system. It is believed that with the continuous development of technology, the application range and function of quartz accelerometer will be further improved and improved, and make greater contributions to flight safety and scientific development.

If you want to know more about quartz accelerometers or purchase, please contact me through the following ways:

Email : info@ericcointernational.com

Web: https://www.ericcointernational.com/accelerometer/quartz-accelerometer



Thursday, November 9, 2023

Internal Structure Analysis of IMU


The full name of IMU is Inertial Measurement Unit. It is a module composed of multiple sensors such as a three-axis accelerometer and a three-axis gyroscope.

IMU is mainly used for north finding or navigation and is widely used in driverless vehicles and drones.

Let’s talk about the working principles of the three-axis accelerometer and three-axis gyroscope in Ericco’s IMU.

1. Three-axis accelerometer

Three-axis accelerometer is based on the basic principle of acceleration to achieve work.

A triaxial accelerometer is an inertial sensor that can measure the specific force of an object, that is, the overall acceleration or nongravitational force acting on a unit mass without gravity. When the accelerometer remains stationary, it can sense the acceleration of gravity, while the overall acceleration is zero. In a free-fall motion, the overall acceleration is the acceleration of gravity, but the accelerometer is in a weightless state internally, and at the same time, the output of the accelerometer is zero.

The three-axis accelerometer can be used to measure angles. Intuitively, e amount of spring compression is determined by the angle between the accelerometer and the ground. The specific force can be measured by the compression length of the spring. Therefore, without external force, the accelerometer can accurately measure the pitch and roll angle without accumulated error.

MEMS triaxial accelerometers use piezoresistive, piezoelectric, and capacitive operating principles, and the specific force (pressure or displacement) generated is proportional to the changes in resistance, voltage, and capacitance respectively. These changes can be collected through corresponding amplification and filtering circuits. The disadvantage of this sensor is that it is greatly affected by vibration.

2. Three-axis gyroscope

The three-axis gyroscope is the core sensitive device of the inertial navigation system, and its measurement accuracy directly affects the accuracy of the attitude calculation of the inertial navigation system.

Function: Calculate the angular velocity and the angle after integrating the angular velocity in the measurement unit.

Principle: To understand the principle of a three-axis gyroscope, one must first know the Coriolis force. Coriolis force is an inertial or fictitious force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. The Coriolis force comes from the inertia motion of an object.

When a particle moves in a straight line relative to an inertial system, its trajectory relative to the rotating system is a curve due to its own inertia. Based on a rotating system, we believe that there is a force driving the trajectory of a particle to form a curve. Coriolis force is a description of this deviation, that is, when the motion of a straight line is placed in a rotating system, the trajectory of the straight line will shift, but the problem of actually not moving in a straight line is not affected by the force. Establishing such a virtual force is called a Coriolis force.

Therefore, in a gyroscope, we select two objects that are in constant motion and have their phases of motion differ by -180 degrees, that is, the two mass blocks move in opposite directions with the same size. The Coriolis force generated by them is opposite, thereby compressing the movement of the two corresponding capacitor plates, resulting in differential capacitance changes. The change in capacitance is proportional to the rotational angular velocity. The change in rotation angle can be obtained from the capacitance.

Ericco not only has FOG IMU but also MEMS IMU, high-precision navigation level and north-seeking level. If you are interested, please feel free to contact us.

Web: https://www.ericcointernational.com/inertial-measurement-units

Email: info@ericcointernational.com

Whatsapp: 13630231561




Tilt Sensor in Construction Machinery and other 11 Application Scenarios Detailed (Part 2)

 


The tilt sensor is a kind of acceleration sensor that uses the principle of inertia to measure the angle change. Inclination sensors are used in a variety of applications to measure angles.

6. Robots

Robot - In recent years, robot technology has developed rapidly, and industrial developed countries such as Europe and the United States have long begun to conduct systematic research on various robots, and with the progress of science and technology and the passage of time, a large number of research results have been achieved. We know that a large number of sensors are applied to the robot, among which the inclination sensor can monitor the robot's state in real time. Tilt sensors ER-TS-3160VO, for example, are used in urban plumbing robots.

Uavs - UAVs are equipped with a large number of tilt sensors for real-time detection and monitoring of aircraft flight attitude, which are transmitted to the ground control center through radio waves. The high-precision tilt sensor series belongs to the high-precision and high-stability series, and has a wide range of applications in aircraft attitude calibration, sail attitude control and other fields.

7. Railroad tracks

Track detector: the current track measurement method has poor intelligence, low measurement accuracy and long operation time, so it is urgent to design a portable intelligent track detector inclination sensor suitable for general use for track inspection instrument to detect the inclination and height difference of railway in real time.

8. Power pylons

Power line tower tilt intelligent monitoring - power line tower collapse events occur from time to time, once collapse, will cause huge losses, tilt sensor applied to power line tower tilt angle monitoring, can real-time monitoring power line tilt angle, once the tilt angle is too large due to natural disasters such as wind, real-time warning signals, by staff maintenance to reduce losses.

9. Platform control

Shipborne horizontal platform - The inclination sensor is applied on the shipborne horizontal platform, which is used for shipborne satellite to track the base of the antenna to keep the antenna in a horizontal state at all times, and for real-time control of the platform, which can isolate the pitch and roll motion of the hull and make the platform level.

In addition, the inclination sensor is also applied in the launching process of the ship air bag, and is applied to the hook swing of the large pipe laying ship for monitoring and adjustment.

Application of inclination sensor in automatic levelling system of reference plane of large optoelectronic equipment. The dip angle sensor installed on the base detects the dip angle and direction of the reference plane, converts the angle into the elongation of several mechanical legs according to the leveling algorithm, and drives the elongation of the mechanical legs to make the reference plane level.

10. Solar Energy

Solar energy - solar energy is a kind of clean energy, its application is generally growing within the century, the use of solar power is a way to use solar energy, so in order to get sufficient use of solar energy, how to choose the solar cell azimuth and tilt Angle is an important issue, the use of inclination sensor to adjust the Angle, the utilization of solar energy further improved.

11. Agricultural applications

Groove cleaning machine - The inclination sensor is used in the groove cleaning machine for foundation groove and farmland ground leveling. The flatness is monitored and controlled.

The application of tilt sensor ER-TS-12200-Modbus in paddy field grader is used for soil leveling in southern paddy field. The fine leveling technology of paddy field is an important measure to save irrigation water, improve fertilizer utilization rate, inhibit weed growth, increase rice yield and reduce production cost in the process of rice production.

 

Tilt sensor has a wide range of applications, and many fields will use it, especially in the field of life and industry. Without it, many mechanical tools can not be carried out, can not work well, and can not guarantee safety.

Wednesday, November 8, 2023

What is the Vibration Resistance of Quartz Accelerometer?

 The quartz flexible accelerometer is an important measurement component in the strapdown inertial navigation system. The real-time velocity of the carrier can be obtained by connecting the three points in the coordinate system of the moving carrier, and the current position of the carrier can be obtained by the quadratic integration of the accelerometer. If there is an error in the output value of the accelerometer, the error will be amplified with the integration of time, so the accuracy of the accelerometer will directly affect the accuracy of the entire inertial system. The characteristic of strapdown inertial navigation is that the measurement device is installed on the main body of navigation information such as missiles, ships and aircraft, so in practical application, the accelerometer may be in the vibration, shock, temperature change and other harsh environmental conditions for a long time, which has a great impact on its measurement accuracy, stability and life. The inertial navigation has strict requirements on the performance of the quartz flexible accelerometer. If it has high accuracy and good stability, it can extend the working cycle of the whole system and improve the working efficiency.

The pendulum plate of quartz flexible accelerometer is formed by quartz material after laser cutting, acid etching and other special processing, and the thermal expansion coefficient is very small, which is 1/10~1/20 of ordinary glass, but quartz glass is a brittle material, and the thickness of the flexible beam is 0.03mm, which is easy to break. In actual work, the accelerometer may often be in a harsh environment such as vibration, shock, and temperature upheaval, which has a great test for its accuracy and stability. In addition, the uneven thickness of the flexible beam edge will also reduce the reliability of the pendulum. Therefore, to study the impact resistance of quartz flexible accelerometer is to study the impact resistance of pendulum components. The designed quartz accelerometer ER-QA-02A has the characteristics of vibration resistance, and maintains 100 (3~7 days)μg in the bias repeatability, the scale factor stability is less than 100 (3~7 days)ppm, and the operating temperature can reach -45~+150℃.

If you want to know more about quartz accelerometers or purchase, please contact me through the following ways:

Email : info@ericcointernational.com

Web: https://www.ericcointernational.com/accelerometer/quartz-accelerometer

Why is this north Seeker your best choice in the drilling field?

  During downhole operations, the main problems that the north   seeking system needs to solve include impact vibration, system volume, azim...