Tuesday, November 14, 2023

Tilt Sensors for Coal Washing and Mining Machinery


 

Tilt sensor is the mainstream of coal washing machine industry.

Open-pit coal mining machine, as the name suggests, is the mining machinery for open-pit mining. In order to ensure the work safety of the coal washing machine, the chassis of the entire equipment needs to be level before work to ensure the safety of construction. The ER-TS-5276DI dynamic tilt sensor is installed to measure the tilt of the chassis in all directions, and the angle output signal is sent to the PLC to drive the hydraulic cylinder to achieve the level of the chassis. The angle measurement of the arm is used to calculate the lifting height and prevent the entire equipment from tipping over due to excessive lifting, causing property damage and casualties.

Open-pit mining long time working in high temperature, high dust, easy corrosion environment, and the tilt sensor acts as the sense of the mining machine, if the tilt sensor goes wrong, the work efficiency and safety issues have a great impact, ER-TS-5276DI dynamic tilt sensor, can be applied to water, oil, steam dust and other harsh environment, high sensitivity, durable. The coal washing machine is to use the principle of different density, stratify the coal seam with wind and water, discharge gangue and impurities, and recover the cleaned coal that meets the requirements.

With the acceleration of the process of mechanical modernization, the automation and intelligence of large machinery are getting higher and higher, and the automatic monitoring of the floating height of coal washing machine has become the mainstream of the coal washing machine industry.

If you want to learn more about tilt sensors or buy 

Please contact me in the following ways:

Email: info@ericcointernational.com

Whatsapp: 173 9198 8506

What are the advantages of MEMS accelerometers?

 

MEMS refers to a batch of micro-devices or systems that integrate micro-mechanisms, micro-sensors, micro-actuators, signal processing and control circuits, interfaces, communications and power supplies into one or more chips.The sensor made by MEMS technology has the characteristics of miniaturization, integration, low cost, high efficiency and mass production.    At the same time, the MEMS sensor can not only sense the measured parameters, but also convert them into signals for easy measurement. And the signal can be analyzed, processed, identified and judged, so the image is called intelligent sensor.

Because the traditional sensors and actuators based on electromechanical technology cannot meet the needs of industrial, consumer electronics and other fields in terms of volume, price and capacity, MEMS began to develop.

Traditional accelerometers, though increasingly small, are impossible to fit into some electronic devices.  And in order to ensure performance, such a accelerometer production is low and high price can be imagined. ER-MA-5 bias stabilitys 5 ug, factor scale non-linearity is 500ppm,is specially designed for north seeking, pointing, initial alignment in logging tools/gyro tools, mining/drilling equipment, weapon/UAV launch systems, satellite antenna,target tracking system and so on.  Thanks to the high performance,  it can also used in high precision attitude measuring, stabilization control, positioning, navigating in navigation grade MEMS IMU/ INS, Land surveying/land mobile mapping system, railway train system, etc.   

If you want to know more about quartz accelerometers or purchase, please contact me through the following ways:

Email : info@ericcointernational.com


Web: https://www.ericcointernational.com/accelerometer/quartz-accelerometer

Application of high-precision inertial navigation IMU module in surveying and mapping


With the rapid development of science and technology, high-precision inertial navigation IMU modules are increasingly used in the field of surveying and mapping. This advanced technology not only improves the accuracy and efficiency of surveying and mapping, but also greatly promotes the development of surveying and mapping science.

First of all, one of the main applications of high-precision inertial navigation IMU modules in surveying and mapping is aerial surveying and mapping. Aerial surveying and mapping play an important role in geographic information systems (GIS), and high-precision inertial navigation IMU modules can provide important data such as aircraft attitude, position and speed information. By carrying this module, aerial surveying and mapping can achieve high-precision positioning and three-dimensional modeling of the earth's surface, providing reliable data support for urban planning, traffic management, environmental protection and other fields.

Secondly, high-precision inertial navigation IMU modules are also widely used in ground surveying and mapping. Ground surveying and mapping are mainly used for drawing maps, measuring surface morphology and surveying regional resources. The high-precision inertial navigation module IMU can obtain the position coordinates, attitude angle, speed and other information of the measurement vehicle in real time, thereby improving the accuracy and reliability of surveying and mapping data. Whether it is road surveying in urban construction planning, or land surveying and resource assessment, high-precision inertial navigation IMU modules can play an important role.

In addition to being widely used in two-dimensional surveying and mapping, high-precision inertial navigation IMU modules can also play an important role in three-dimensional surveying and mapping. With the continuous advancement of 3D technology, people's demand for 3D models of landforms, buildings, resources, etc. is increasing. The high-precision inertial navigation IMU module can provide precise position and attitude data for three-dimensional surveying and mapping, thereby achieving high-precision three-dimensional modeling of complex landforms and buildings. This has played an important role in promoting urban planning, architectural design, cultural relics protection and other fields.

In addition to the above application fields, high-precision inertial navigation IMU modules also play an important role in ocean surveying and mapping. Marine surveying and mapping is mainly used for seabed landform survey, marine resource assessment and navigation safety. The inertial navigation IMU module can cooperate with equipment such as sonar depth sounders to provide accurate position and attitude information of the ship for accurate charting and research on seabed landforms. In engineering fields such as submarine pipelines and offshore oil development, high-precision inertial navigation IMU modules can also provide reliable data support for engineering surveying and mapping.

The ER-MIMU-01 and ER-MIMU-05 developed by Ericco use high-quality and reliable MEMS accelerometers and gyroscopes. RS422 communicates with the outside. The baud rate can be flexibly set between 9600~921600, and the user needs to be set through the communication protocol. communication baud rate. Equipped with X, Y, Z three-axis precision gyroscope, X, Y, Z three-axis accelerometer, with high resolution, it can output the original hexadecimal complement of X, Y, Z three-axis gyroscope and accelerometer through RS422 code data (including gyroscope hexadecimal complement) numerical temperature, angle, accelerometer hexadecimal temperature, acceleration hexadecimal complement); it can also output gyroscope and accelerometer data that have been processed by underlying calculations Floating point dimensionless values, whether it is aviation, ground or ocean surveying and mapping, can achieve a more accurate and efficient surveying and mapping process through the high-precision inertial navigation IMU module. If you want to know more about IMU products, you can click on the link below to learn more.

Web:https://www.ericcointernational.com/inertial-measurement-units

Email: info@ericcointernational.com

Whatsapp: 13630231561

WeChat:13992884879



Monday, November 13, 2023

Application of Tilt Sensor in Railway Monitoring



 Tilt sensors are widely used in many fields. Today we mainly look at the application of tilt sensors in railway monitoring.

The train is a special means of transport running on the railway track. Its use environment is complex and changeable, and it is often affected by various factors such as wind, snow, earthquake, debris flow, landslide, tunnel foreign matter, geological mutation, etc. It is easy to cause deformation of the railway track and be covered by foreign matter, which seriously threatens the safety of the train. Ericco design and production of the tilt sensor ER-TS-3160VO maximum measurement accuracy +0.01°, not only can accurately measure the inclination of the track, shape, but also real-time monitoring of the tilt of the environment around the track, especially in some places less traveled, in advance to make a preventive alarm, to avoid the occurrence of major accidents.

If you want to learn more about tilt sensors or buy tilt sensors

Please contact me in the following ways:

Email: info@ericcointernational.com

Whatsapp: 173 9198 8506

Sunday, November 12, 2023

Application of Tilt Sensor in Medical Device


 

Tilt sensors are widely used in medical instruments and human body detection.

The tilt sensor is installed in the control handle of the operating bed, and the motor drive process is controlled by the movement of the control handle in the direction of roll and pitch to achieve accurate control of the tilt angle of the operating vehicle. In addition, it has a wide range of applications in rehabilitation beds, automatic wheelchairs and other aspects.

In the application of medical devices, a small field failure problem is a major event related to the life and health of patients. The ever-changing tilt sensor technology can provide higher reliability, longer service life and higher accuracy, which is more deeply applied to medical devices. For example, our wireless ER-TS-12200-Modbus tilt sensor can be applied in medical devices, its accuracy is very high, can reach 0.001°, can achieve accurate control of medical devices.

If you want to learn more about MEMS tilt sensors or buy

Please contact me in the following ways:

Email: info@ericcointernational.com

Whatsapp: 173 9198 8506

What Does an Accelerometer do in an Airplane?

Quartz accelerometer is widely used in flight control system. It mainly relies on its high precision and high stability to realize the functional design of navigation, control and safety system.

1. Navigation system

As an important part of navigation system, quartz accelerometer is mainly used to measure the acceleration, speed and altitude of aircraft. Based on its high precision and strong stability, the quartz accelerometer can provide high-precision positioning and navigation information for aircraft and improve flight safety performance. At the same time, quartz accelerometers can be used in combination with other sensors such as gyroscopes to achieve more accurate aircraft positioning and navigation. For example, ER-QA-03C is specially designed for the aviation field, its size is 18.2X23mm, bias repeatability is 15-80μg,scale factor repeatability is 15-80 PPM and class II non-linearity repeatability is 20 to 50μg/g2.

2. Control system

The quartz accelerometer is used in the control system to monitor the attitude, angular velocity and acceleration of the aircraft. Based on its high precision and fast reaction speed, the quartz accelerometer can detect the status and behavior of the aircraft in real time, achieve fast response and control, and improve flight safety and stability.

 

3. Security system

Quartz accelerometers are also widely used in safety systems, mainly for detecting and preventing turbulence and abnormal behavior of aircraft. Based on its high precision and fast reaction speed, the quartz accelerometer can detect the acceleration change and turbulence of the aircraft in real time, and take corresponding measures in advance to avoid the occurrence of accidents.

Quartz accelerometer has been widely used in the field of flight control abroad. Its high precision and strong stability provide important support and guarantee for the design and development of flight system. It is believed that with the continuous development of technology, the application range and function of quartz accelerometer will be further improved and improved, and make greater contributions to flight safety and scientific development.

If you want to know more about quartz accelerometers or purchase, please contact me through the following ways:

Email : info@ericcointernational.com

Web: https://www.ericcointernational.com/accelerometer/quartz-accelerometer



Thursday, November 9, 2023

Internal Structure Analysis of IMU


The full name of IMU is Inertial Measurement Unit. It is a module composed of multiple sensors such as a three-axis accelerometer and a three-axis gyroscope.

IMU is mainly used for north finding or navigation and is widely used in driverless vehicles and drones.

Let’s talk about the working principles of the three-axis accelerometer and three-axis gyroscope in Ericco’s IMU.

1. Three-axis accelerometer

Three-axis accelerometer is based on the basic principle of acceleration to achieve work.

A triaxial accelerometer is an inertial sensor that can measure the specific force of an object, that is, the overall acceleration or nongravitational force acting on a unit mass without gravity. When the accelerometer remains stationary, it can sense the acceleration of gravity, while the overall acceleration is zero. In a free-fall motion, the overall acceleration is the acceleration of gravity, but the accelerometer is in a weightless state internally, and at the same time, the output of the accelerometer is zero.

The three-axis accelerometer can be used to measure angles. Intuitively, e amount of spring compression is determined by the angle between the accelerometer and the ground. The specific force can be measured by the compression length of the spring. Therefore, without external force, the accelerometer can accurately measure the pitch and roll angle without accumulated error.

MEMS triaxial accelerometers use piezoresistive, piezoelectric, and capacitive operating principles, and the specific force (pressure or displacement) generated is proportional to the changes in resistance, voltage, and capacitance respectively. These changes can be collected through corresponding amplification and filtering circuits. The disadvantage of this sensor is that it is greatly affected by vibration.

2. Three-axis gyroscope

The three-axis gyroscope is the core sensitive device of the inertial navigation system, and its measurement accuracy directly affects the accuracy of the attitude calculation of the inertial navigation system.

Function: Calculate the angular velocity and the angle after integrating the angular velocity in the measurement unit.

Principle: To understand the principle of a three-axis gyroscope, one must first know the Coriolis force. Coriolis force is an inertial or fictitious force that acts on objects in motion within a frame of reference that rotates with respect to an inertial frame. The Coriolis force comes from the inertia motion of an object.

When a particle moves in a straight line relative to an inertial system, its trajectory relative to the rotating system is a curve due to its own inertia. Based on a rotating system, we believe that there is a force driving the trajectory of a particle to form a curve. Coriolis force is a description of this deviation, that is, when the motion of a straight line is placed in a rotating system, the trajectory of the straight line will shift, but the problem of actually not moving in a straight line is not affected by the force. Establishing such a virtual force is called a Coriolis force.

Therefore, in a gyroscope, we select two objects that are in constant motion and have their phases of motion differ by -180 degrees, that is, the two mass blocks move in opposite directions with the same size. The Coriolis force generated by them is opposite, thereby compressing the movement of the two corresponding capacitor plates, resulting in differential capacitance changes. The change in capacitance is proportional to the rotational angular velocity. The change in rotation angle can be obtained from the capacitance.

Ericco not only has FOG IMU but also MEMS IMU, high-precision navigation level and north-seeking level. If you are interested, please feel free to contact us.

Web: https://www.ericcointernational.com/inertial-measurement-units

Email: info@ericcointernational.com

Whatsapp: 13630231561




High-precision IMU is coming to help in the fields of land, sea and air

  High-precision IMU is now widely used in many fields of sea, land and air. It can provide real-time and accurate information on the carrie...