Sunday, December 3, 2023

Application of Tilt Sensor in the Settlement of Railway Track Subgrade

 


The tilt sensor can be well applied in the remote automatic monitoring system of subgrade settlement.

In order to ensure the high-speed and healthy development of railway, the remote automatic monitoring system of subgrade settlement based on laser measurement, advanced sensing and wireless network technology is developed. The monitoring system includes four sub-systems: automatic measurement of surface settlement by laser, simultaneous automatic measurement of subgrade stratified settlement and lateral displacement, automatic measurement of subgrade lateral profile settlement, data acquisition and wireless transmission. Automatic measurement of surface settlement is achieved by laser measurement and automatic calibration technology: simultaneous automatic measurement of subgrade stratified settlement and lateral displacement is achieved by Hall sensor, laser ranging and dip angle transmission sensor realization: The automatic measurement of subgrade transverse profile settlement is achieved by the tilt sensor driven by the main and slave motors. The monitoring system has been verified by laboratory and designed by engineering, and has been tested in a station of high-speed railway.

The ER-TS-12200-Modbus tilt sensor can be well applied in the control system, so as to realize real-time monitoring of the overall settlement of the subgrade, local settlement and the settlement of different layers in the section, and transmit the output signal of the tilt sensor to the computer through wireless transmission or various wired networks. Then the received data is processed, analyzed and stored by computer software.

If you want to learn more about MEMS tilt sensors or buy tilt sensors

Please contact me in the following ways:

Email: info@ericcointernational.com

Whatsapp: 173 9198 8506

Friday, December 1, 2023

The Working Principle of the Three Axis Accelerometer



 The three-axis acceleration sensor is used to measure the spatial acceleration sensor in the acceleration sensor, that is, to measure the speed change of the object in space. There is no difference in the measurement principle between the three-axis acceleration sensor and the single-axis and two-axis acceleration sensor. The main difference between them is that the measurement dimensions are different. The three-axis acceleration sensor is mainly to decompose the spatial acceleration in X, Y, and Z three axes, and three single axes can be turned into a three-axis in a certain technology.

The current three axis acceleration sensors mostly use piezoresistive, piezoelectric and capacitive working principles. The acceleration produced is proportional to the change of resistance, voltage and capacitance, and is collected through the corresponding amplifying and filtering circuit. This and the normal acceleration sensor is based on the same principle, so in a certain technique three single axes can be turned into a three axis. For most sensor applications, the two axis accelerometer has been able to meet most applications. But some applications still focus on three axis accelerometer, for example, in data acquisition equipment, valuables monitoring, collision monitoring, building vibration measurement, wind turbines, wind turbines and other sensitive large structure vibration.

Three axis accelerometer, as a basic component of inertial navigation system, is widely used in aviation field. Signal transmission between system and controller, processor and memory is mainly carried out through space bus. As a standard specification for the development of space systems, Space Wire can improve the transmission rate of accelerometers and enhance the stability of the transmission.

Application of three-axis acceleration sensor:

Automotive Electronics:

In the case of the body safety system, when the body is hit, the impact sensor sends a signal to the electronic controller within a few microseconds. Then the electronic controller will immediately calculate and make corresponding assessment according to the intensity of the collision, the number of passengers and the position of the seat/seat belt and other parameters, with the data returned by the sensors distributed throughout the carriage, and in the shortest time through the electric explosion drive to activate the airbag to ensure the safety of passengers.

Impact protection for portable devices:

Portable devices, due to their application, often fall or collide unexpectedly, resulting in a huge impact on the internal components. When a drop occurs, the system detects a sudden change in acceleration and performs self-protective actions, such as turning off electrical or mechanical devices with poor seismic performance to prevent damage, or damaging the hard disk head or scratching the platter, which could result in permanent data loss.

Satellite navigation:

When entering an area or environment with poor reception of satellite signals, the navigation function will be lost due to loss of signal. A 3-axis acceleration sensor based on MEMS technology, combined with components such as a gyroscope or an electronic compass, can create a bearing reckoning system that is complementary to the GPS system.
Virtual Reality:

For example, AR/VR, game console controller, etc., through wearing or handheld game equipment, controller, sensor synchronous sensing human acceleration, according to the acceleration analysis of the human body’s action, and then on the game screen synchronously show the corresponding game action, some motion sensing games can even achieve the same exercise effect as outdoor sports.

For more information, please feel free to contact info@ericcointernational.com

Wednesday, November 29, 2023

High Precision IMU Application in UAV


As the key technology of UAV, navigation technology plays an important role in the research and commercial application of UAV. Navigation technology plays a role in the whole process of take-off, navigation and landing of UAV, ensuring the safety of UAV flight. Therefore, the research of navigation technology is the focus of UAV research field.

The IMU (Inertial Measurement Unit) is a sensor module that integrates a three-axis accelerometer and a three-axis gyroscope to measure the linear acceleration and angular velocity of an object. In the UAV, IMU plays an important role, it can provide accurate attitude and movement information, providing key data for the control and navigation of the UAV. The main role of the IMU is to help the drone maintain balance and attitude. The UAV will be affected by external factors in flight, such as wind speed, gravity, etc., which will cause the attitude of the UAV to change. By measuring the acceleration and angular velocity of the UAV in real time, the IMU can accurately identify the attitude change of the UAV, thus helping the UAV maintain balance. The application of IMU in UAVs is not limited to attitude control and flight stability. It can also be used with other sensors such as GPS (Global Positioning System) and magnetometers to provide more accurate navigation and positioning information. At the same time, IMU can also be used for UAV attitude estimation, motion detection, obstacle avoidance and other functions to improve the autonomy and safety of UAV. For more accurate stability, ER-MIMU-01 uses high-quality and reliable MEMS accelerometers and gyroscopes with bias instability up to 0.02 degrees/hour. Weighs only 70 grams.

The application of IMU in UAV is extensive and important. It provides critical data for drone control and navigation, enabling the drone to perform a variety of tasks efficiently. The application of IMU will vary depending on the design and use of different types of UAV.

Fixed-wing Drone: These drones are designed like traditional aircraft, with Fixed wings and tail fins. It is usually used for long-duration flight and large-scale reconnaissance missions, with high speed and flight stability. IMU is used for attitude control and flight stability maintenance in fixed-wing UAVs

Multi-rotor Drone: This type of drone provides lift and handling through multiple rotors, most commonly four – and six-rotor. The multi-rotor UAV has vertical takeoff and landing and hovering capabilities, which is suitable for close-range reconnaissance, aerial photography and logistics distribution tasks. Imus are used in multi-rotor UAVs for attitude control, flight stability and precise positioning.

Vertical Takeoff and Landing Transition Drone: This drone has a variable flight mode that can switch between vertical takeoff and landing and horizontal flight. It combines the advantages of fixed-wing UAVs and multi-rotor UAVs and is suitable for missions requiring long duration flight and flexible maneuvering. Imus play a key role in VTOL and transition UAVs for flight mode conversion and attitude control.

Inertial navigation system (INS) detecting acceleration and rotation motion of high frequency (1 KHZ) sensor, the inertial sensor data processing after the displacement and rotation of the vehicle can drawn real-time information. INS have bias and noise problems affect the outcome. By using a sensor fusion technique based on kalman filtering, we can be the integration of GPS and inertial sensor data, from each director, in order to achieve better location performance. Attention because of the unmanned for reliability and security requirement is very high, so based on GPS and inertial sensor positioning is not the only way of positioning in the unmanned, we also use LiDAR point cloud and high precision map matching, and locating methods such as visual mileage calculation method for various positioning method to correct each other to achieve more accurate results.

 

If you want to know more about imu's products, please click the link below to contact us, and we will have professional personnel connect with you.

Web:https://www.ericcointernational.com/inertial-measurement-units

Email: info@ericcointernational.com

Whatsapp: 13630231561

WeChat13992884879



Tilt Sensors for Monitoring Hydropower Stations and DAMS



 Tilt sensors can be used for hydropower station and dam monitoring.

The safety of hydropower DAMS not only directly affects the power plant's own benefits, but also closely related to the lives and property of downstream people, national economic development and ecological environment. With the development of electronic technology and the popularization and application of digital communication technology, it provides the guarantee for monitoring automation. At present, the dam monitoring automation of the national power system has been fully carried out, and it is developing in the direction of network and intelligence.

(1) Deformation monitoring

Dam deformation is an important monitoring project for hydropower DAMS. It can also be divided into horizontal displacement and vertical displacement 2 subterms. Most DAMS are equipped with horizontal and vertical displacement observation, usually one pair of measurement points per dam section. In recent years, more attention has been paid to the horizontal displacement observation of typical dam section. Generally, more than 3 measuring points are arranged along the dam height.

Dam deformation monitoring equipment can choose tension line, GPS, fixed inclinometer, ER-TS-3160VO tilt sensor, static level, etc.

(2) Seepage

Dam seepage is also one of the important monitoring projects of hydropower DAMS. It can also be divided into two sub-terms: osmotic pressure and osmotic flow. The observation facilities of concrete dam are located in the foundation corridor, and the lifting pressure is measured at one point for each dam section. The seepage flow measurement point is determined according to the water collection situation of the drainage ditch, and can generally measure the regional flow and the total amount. The seepage rate of earth-rock dam is observed at the seepage point at the toe of dam, and the seepage pressure measurement point is arranged under the dam body infiltration line or behind the toe plate according to the specific dam type. In addition, the slopes of the left and right banks of the dam have been set up to observe the water table in order to monitor the seepage around the dam. Seepage monitoring of dam mainly adopts osmometer as testing equipment.

(3) Vipassana items such as stress and strain

Dam stress and strain and other internal observation items are general observation items of hydropower DAMS. Only some critical observation points are included in automatic monitoring, and many middle and low DAMS have stopped measuring or sealed up such observation items. In the dam construction stage, the stress and strain internal observation items are widely used, and the commonly used monitoring equipment include embedded strain gauge and steel bar gauge.

If you want to learn more about tilt sensors or buy

Please contact me in the following ways:

Email: info@ericcointernational.com

Whatsapp: 173 9198 8506

The Structure of Accelerometer

 


An accelerometer is an instrument that measures acceleration. Acceleration measurement is an important subject in engineering technology. When the object has a large acceleration, the object and the instruments and equipment carried by it and other objects without relative acceleration are subjected to forces that can produce the same large acceleration, that is, dynamic loads. To know the dynamic load, you need to measure the acceleration. Secondly, to know the spatial position of the instantaneous aircraft, rockets and ships, its acceleration can be measured continuously through inertial navigation , and then the velocity component is obtained through integral calculation, and the position coordinate signal is obtained by integrating again.

The components of common accelerometers are as follows: housing (fixed to the measured object), reference quality, sensitive components, signal output devices, etc. Accelerometers require a certain amount of range and accuracy, sensitivity, etc. These requirements are often somewhat contradictory.

Accelerometers based on different principles have different ranges (from several g to hundreds of thousands of g), and their sensitivities to catastrophic acceleration frequencies are also different. Common accelerometers are based on the following principles:

1.The reference mass is connected to the housing by a spring . The relative displacement between the housing and the housing reflects the magnitude of the acceleration component. This signal is output via the potentiometer as a voltage.

2.The reference mass is fixed by the elastic thin rod and the shell, the dynamic load caused by acceleration deforms the rod, the strain resistance wire senses the size of the deformation, and its output is an electrical signal proportional to the size of the acceleration sub-disk.

3.The reference mass is fixedly connected to the housing through the piezoelectric element. The dynamic load of the mass exerts pressure on the piezoelectric element. The piezoelectric element outputs an electrical signal proportional to the pressure, that is, the acceleration component.

The accelerometer for measuring aircraft overload was one of the first aircraft instruments to be used. They are also commonly used in aircraft to monitor engine failure and fatigue damage to aircraft structures. Accelerometer is an important tool to study the flutter and fatigue life of various aircraft in flight test. In inertial navigation system, high precision accelerometer is one of the most basic sensitive elements. The performance of accelerometers in different applications is very different. The high precision inertial navigation system requires the resolution of accelerometers up to 0.001g, but the range is not large. The accelerometer for measuring aircraft overload may require a range of 10g, but the accuracy is not high. Therefore, Ericco designed ER-QA-03A high performance quartz accelerometer and ER-QA-01A aerospace quartz for the application characteristics in this field The characteristics of accelerometer are: ER-QA-03A’s bias repeatability is 10-50μg,scale factor repeatability is 15-50 PPM and class II non-linearity repeatability is 10-30μg/g2. ER-QA-01A’s bias repeatability is 10μg,scale factor repeatability is 10 PPM and class II non-linearity repeatability is 10μg/g².

From this, we can simply understand the definition, structure and application of the accelerometer in aircraft overload, if you want to know more about the accelerometer related knowledge. Please click here,get more https://www.ericcointernational.com/accelerometer

Email : info@ericcointernational.com     

Tuesday, November 28, 2023

Selecting an Inertial Measurement Unit (IMU) for UAV Applications

An inertial measurement unit (IMU) is an electronic device that uses accelerometers and gyroscopes to measure acceleration and rotation and can be used to provide position data.

IMUs are an important component of unmanned aerial systems (UAVs, UAS, and drones) and common applications include control and stabilization, guidance and correction, measurement and testing, and mobile mapping.

Raw measurements output from an IMU (angular rate, linear acceleration, and magnetic field strength) or AHRS (roll, pitch, and yaw) can be fed into devices such as an inertial navigation system (INS) to calculate relative position, direction, and speed to help UAV navigation and control.

IMUs are manufactured with a wide range of features, parameters and specifications, so the most suitable choice will depend on the requirements of the specific drone application. This article outlines some of the key options and considerations when selecting an IMU for drone applications, such as underlying technology, performance, and durability.

There are many types of IMUs, some of which incorporate magnetometers to measure magnetic field strength, but the four main technology categories for drone applications are: silicon MEMS (microelectromechanical systems), quartz MEMS, FOG (fiber optic gyroscopes), and RLG (Ring Laser Gyroscope).

Silicon MEMS IMUs are based on tiny sensors that measure the deflection of a mass due to motion, or the force required to hold the mass in place. They typically have higher noise, vibration sensitivity, and instability parameters than FOG IMUs, but as technology continues to advance, MEMS-based IMUs are becoming more accurate.

MEMS IMUs are well suited for small UAV platforms and high-volume production units because they can often be manufactured at smaller size and weight and at lower cost. The tactical-grade ER-MIMU03 and ER-MIMU07 developed by Ericco can be widely used on UAVs. If you want to know more about IMU products, please click the link below to contact us.

Web:https://www.ericcointernational.com/inertial-measurement-units

Email: info@ericcointernational.com

Whatsapp: 13630231561

WeChat:13992884879



The Difference and Selection of Gyroscope and Tilt Sensor

 


Tilt sensors and gyroscopes are commonly used in inertial navigation technology, but they have some differences in measurement, working principle and accuracy.

1. Tilt sensor

The tilt sensor (inclinometer) is induced tilt deviation angle, and only data feedback without command feedback. Tilt sensor measures static dip angle.

Tilt sensors measure the angle between the object and the horizontal plane to obtain the tilt angle. Common tilt sensors include uniaxial and biaxial tilt sensors, which detect the tilt of an object in a plane.

The working principle of the inclination sensor is mainly divided into two types: capacitive type and vibration gyroscope type. Capacitive inclination sensor uses the object’s inclination to change the capacitance in the capacitor to detect the inclination angle. The vibration gyro inclination sensor uses the motion state of the gyroscope to determine the tilt of the object.

In applications, inclination sensors are often used in aviation, ships, construction and other fields, such as attitude control of aircraft and automatic navigation of ships.

2. Gyroscopes

Compared with tilt sensor, gyroscope measures the movement of the dip angle, dip in static measurement result is not accurate. The gyroscope is the induction action variable, and then controls the steering gear to repair the movement command.Gyroscope is not measuring equipment, it is auxiliary equipment, like a tank gun barrel in order to make the tank in the procession precision fire, which installed the gyroscope, full automatic control the angle of the gun barrel.

A gyroscope is a device that measures the angle of rotation of an object in space. According to their different structures and characteristics, gyroscopes can be divided into mechanical gyroscopes and fiber optic gyroscopes.

The working principle of the gyroscope is based on the gyro effect, that is, the rotating axis has the characteristics of stable direction in the rotating state. When the object rotates around a fixed axis, the gyroscope generates a “moment” and outputs the corresponding rotation rate signal, thus measuring the angle of rotation of the object. Gyroscopes are widely used in modern aerospace, navigation, geological exploration and military fields.

So we measure the angle in daily life, is to choose the angle sensor or gyroscope choice, we can choose according to the nature. Measuring the static angle, the choice of the tilt sensor, for example ER-TS-12200-Modbus can be used in the following fields: bridge construction, ship navigation attitude measurement, high railway foundation, tunnel monitoring, satellite solar antenna positioning, medical equipment, angle control of various construction machinery; measurement is the movement of the dip angle, then choose a gyroscope. Gyroscopes are classified including: ball bearing free gyroscope, liquid floatation gyroscope, electrostatic gyroscope, flexible gyroscope, fiber optic gyroscope, laser gyroscope and so on.

High-precision IMU is coming to help in the fields of land, sea and air

  High-precision IMU is now widely used in many fields of sea, land and air. It can provide real-time and accurate information on the carrie...