Monday, December 4, 2023

What Is IMU On Drone?


When it comes to flying a drone, it's crucial to understand the complex technology that powers it. An important component that plays a vital role in the stability and performance of a drone is the Inertial Measurement Unit (IMU). The IMU is a critical sensor system that provides critical information to a drone’s flight controller, allowing it to maintain stability, maneuver effectively, and perform a variety of flight maneuvers.

As drone technology continues to advance, the need for precise flight control becomes even more important. The IMU acts as the “brain” of the drone, constantly monitoring and adjusting its position, orientation and movement. By utilizing a combination of sensors such as accelerometers, gyroscopes, and magnetometers, the IMU can accurately measure the drone's acceleration, rotation rate, and magnetic field. This data is then processed by the flight controller to make real-time adjustments and maintain stable flight.

What is an IMU?

The Inertial Measurement Unit (IMU) is an important component of DJI drones, responsible for collecting and providing basic data about the drone's movement and orientation. It is essentially a combination of sensors that work together to capture and measure various parameters of the drone’s movement.

IMUs consist of three main types of sensors: accelerometers, gyroscopes, and magnetometers. Accelerometers measure linear acceleration, allowing the drone to determine the speed and direction of its movement. Gyroscopes, on the other hand, measure angular velocity, providing information about the drone's rotation and orientation in three-dimensional space. Finally, the magnetometer detects the strength and direction of the Earth's magnetic field, helping the drone determine its compass heading.

By collecting data from these sensors, the IMU provides vital information to the flight controller, which is essentially the “brain” of the drone. The flight controller uses this data to make real-time adjustments to the drone's motors, ensuring stability, control and precise navigation.

It is worth noting that IMUs have become increasingly complex in recent years due to technological advances. DJI drones are equipped with high-performance IMUs that provide precise and reliable measurements for responsive flight control in a variety of conditions.

In summary, the IMU on a drone is a complex system of sensors that work together to provide data about the drone's movement and orientation. By utilizing accelerometers, gyroscopes and magnetometers, the IMU ensures stability, control and accuracy of flight.

The importance of IMU for drones

The IMU on a drone plays a vital role in ensuring stable flight and precise control. Without a functioning IMU, drone performance may be affected, resulting in erratic flight behavior and potential safety hazards. Let’s explore the key reasons why an IMU is crucial for DJI drones.

1. Enhance stability: The IMU continuously collects data on the movement, direction and position of the drone. The flight controller then uses this data to make on-the-fly adjustments to the drone's motors and stabilize its flight. By proactively monitoring and correcting deviations, the IMU helps maintain stable and smooth flight, even in challenging weather conditions or turbulent airspace.

2. Precise navigation: Knowing the exact location and direction of the drone is crucial for safe navigation. The IMU provides the flight controller with precise measurements of acceleration, rotation, and magnetic fields, allowing the drone to accurately determine its position relative to its starting point. This enables drones to navigate with precision, follow flight plans and perform complex maneuvers with confidence.

3. Sensitive control: A well-calibrated IMU ensures that the flight control receives accurate data about the drone's attitude, angular velocity and acceleration. This information enables the drone to respond quickly and accurately to the pilot's commands, allowing for smooth and controlled movement. Whether capturing cinematic footage or executing precise flight paths, the role of the IMU in mobility cannot be overstated.

4. Fault detection and redundancy: DJI drones use advanced IMU systems and use redundancy measures to improve reliability. In the event of sensor malfunction or malfunction, redundant sensors in the IMU can compensate for the loss, ensuring critical flight data remains available. This redundancy feature adds an extra layer of safety, as any potential issues with one sensor can be mitigated by other sensors in the IMU system.

Overall, the IMU is an important part of the UAV, providing important data for stable flight, precise navigation, response control and fault detection. It's an integral part of your drone's safety and performance system, ensuring pilots of all skill levels have a smooth, enjoyable flight experience.If you want to know more about imu's products, please click the link below to contact us, and we will have professional personnel connect with you.

 

Web:https://www.ericcointernational.com/inertial-measurement-units

Email: info@ericcointernational.com

Whatsapp: 13630231561

WeChat13992884879    



Sunday, December 3, 2023

Application of Tilt Sensor in the Settlement of Railway Track Subgrade

 


The tilt sensor can be well applied in the remote automatic monitoring system of subgrade settlement.

In order to ensure the high-speed and healthy development of railway, the remote automatic monitoring system of subgrade settlement based on laser measurement, advanced sensing and wireless network technology is developed. The monitoring system includes four sub-systems: automatic measurement of surface settlement by laser, simultaneous automatic measurement of subgrade stratified settlement and lateral displacement, automatic measurement of subgrade lateral profile settlement, data acquisition and wireless transmission. Automatic measurement of surface settlement is achieved by laser measurement and automatic calibration technology: simultaneous automatic measurement of subgrade stratified settlement and lateral displacement is achieved by Hall sensor, laser ranging and dip angle transmission sensor realization: The automatic measurement of subgrade transverse profile settlement is achieved by the tilt sensor driven by the main and slave motors. The monitoring system has been verified by laboratory and designed by engineering, and has been tested in a station of high-speed railway.

The ER-TS-12200-Modbus tilt sensor can be well applied in the control system, so as to realize real-time monitoring of the overall settlement of the subgrade, local settlement and the settlement of different layers in the section, and transmit the output signal of the tilt sensor to the computer through wireless transmission or various wired networks. Then the received data is processed, analyzed and stored by computer software.

If you want to learn more about MEMS tilt sensors or buy tilt sensors

Please contact me in the following ways:

Email: info@ericcointernational.com

Whatsapp: 173 9198 8506

Friday, December 1, 2023

The Working Principle of the Three Axis Accelerometer



 The three-axis acceleration sensor is used to measure the spatial acceleration sensor in the acceleration sensor, that is, to measure the speed change of the object in space. There is no difference in the measurement principle between the three-axis acceleration sensor and the single-axis and two-axis acceleration sensor. The main difference between them is that the measurement dimensions are different. The three-axis acceleration sensor is mainly to decompose the spatial acceleration in X, Y, and Z three axes, and three single axes can be turned into a three-axis in a certain technology.

The current three axis acceleration sensors mostly use piezoresistive, piezoelectric and capacitive working principles. The acceleration produced is proportional to the change of resistance, voltage and capacitance, and is collected through the corresponding amplifying and filtering circuit. This and the normal acceleration sensor is based on the same principle, so in a certain technique three single axes can be turned into a three axis. For most sensor applications, the two axis accelerometer has been able to meet most applications. But some applications still focus on three axis accelerometer, for example, in data acquisition equipment, valuables monitoring, collision monitoring, building vibration measurement, wind turbines, wind turbines and other sensitive large structure vibration.

Three axis accelerometer, as a basic component of inertial navigation system, is widely used in aviation field. Signal transmission between system and controller, processor and memory is mainly carried out through space bus. As a standard specification for the development of space systems, Space Wire can improve the transmission rate of accelerometers and enhance the stability of the transmission.

Application of three-axis acceleration sensor:

Automotive Electronics:

In the case of the body safety system, when the body is hit, the impact sensor sends a signal to the electronic controller within a few microseconds. Then the electronic controller will immediately calculate and make corresponding assessment according to the intensity of the collision, the number of passengers and the position of the seat/seat belt and other parameters, with the data returned by the sensors distributed throughout the carriage, and in the shortest time through the electric explosion drive to activate the airbag to ensure the safety of passengers.

Impact protection for portable devices:

Portable devices, due to their application, often fall or collide unexpectedly, resulting in a huge impact on the internal components. When a drop occurs, the system detects a sudden change in acceleration and performs self-protective actions, such as turning off electrical or mechanical devices with poor seismic performance to prevent damage, or damaging the hard disk head or scratching the platter, which could result in permanent data loss.

Satellite navigation:

When entering an area or environment with poor reception of satellite signals, the navigation function will be lost due to loss of signal. A 3-axis acceleration sensor based on MEMS technology, combined with components such as a gyroscope or an electronic compass, can create a bearing reckoning system that is complementary to the GPS system.
Virtual Reality:

For example, AR/VR, game console controller, etc., through wearing or handheld game equipment, controller, sensor synchronous sensing human acceleration, according to the acceleration analysis of the human body’s action, and then on the game screen synchronously show the corresponding game action, some motion sensing games can even achieve the same exercise effect as outdoor sports.

For more information, please feel free to contact info@ericcointernational.com

Wednesday, November 29, 2023

High Precision IMU Application in UAV


As the key technology of UAV, navigation technology plays an important role in the research and commercial application of UAV. Navigation technology plays a role in the whole process of take-off, navigation and landing of UAV, ensuring the safety of UAV flight. Therefore, the research of navigation technology is the focus of UAV research field.

The IMU (Inertial Measurement Unit) is a sensor module that integrates a three-axis accelerometer and a three-axis gyroscope to measure the linear acceleration and angular velocity of an object. In the UAV, IMU plays an important role, it can provide accurate attitude and movement information, providing key data for the control and navigation of the UAV. The main role of the IMU is to help the drone maintain balance and attitude. The UAV will be affected by external factors in flight, such as wind speed, gravity, etc., which will cause the attitude of the UAV to change. By measuring the acceleration and angular velocity of the UAV in real time, the IMU can accurately identify the attitude change of the UAV, thus helping the UAV maintain balance. The application of IMU in UAVs is not limited to attitude control and flight stability. It can also be used with other sensors such as GPS (Global Positioning System) and magnetometers to provide more accurate navigation and positioning information. At the same time, IMU can also be used for UAV attitude estimation, motion detection, obstacle avoidance and other functions to improve the autonomy and safety of UAV. For more accurate stability, ER-MIMU-01 uses high-quality and reliable MEMS accelerometers and gyroscopes with bias instability up to 0.02 degrees/hour. Weighs only 70 grams.

The application of IMU in UAV is extensive and important. It provides critical data for drone control and navigation, enabling the drone to perform a variety of tasks efficiently. The application of IMU will vary depending on the design and use of different types of UAV.

Fixed-wing Drone: These drones are designed like traditional aircraft, with Fixed wings and tail fins. It is usually used for long-duration flight and large-scale reconnaissance missions, with high speed and flight stability. IMU is used for attitude control and flight stability maintenance in fixed-wing UAVs

Multi-rotor Drone: This type of drone provides lift and handling through multiple rotors, most commonly four – and six-rotor. The multi-rotor UAV has vertical takeoff and landing and hovering capabilities, which is suitable for close-range reconnaissance, aerial photography and logistics distribution tasks. Imus are used in multi-rotor UAVs for attitude control, flight stability and precise positioning.

Vertical Takeoff and Landing Transition Drone: This drone has a variable flight mode that can switch between vertical takeoff and landing and horizontal flight. It combines the advantages of fixed-wing UAVs and multi-rotor UAVs and is suitable for missions requiring long duration flight and flexible maneuvering. Imus play a key role in VTOL and transition UAVs for flight mode conversion and attitude control.

Inertial navigation system (INS) detecting acceleration and rotation motion of high frequency (1 KHZ) sensor, the inertial sensor data processing after the displacement and rotation of the vehicle can drawn real-time information. INS have bias and noise problems affect the outcome. By using a sensor fusion technique based on kalman filtering, we can be the integration of GPS and inertial sensor data, from each director, in order to achieve better location performance. Attention because of the unmanned for reliability and security requirement is very high, so based on GPS and inertial sensor positioning is not the only way of positioning in the unmanned, we also use LiDAR point cloud and high precision map matching, and locating methods such as visual mileage calculation method for various positioning method to correct each other to achieve more accurate results.

 

If you want to know more about imu's products, please click the link below to contact us, and we will have professional personnel connect with you.

Web:https://www.ericcointernational.com/inertial-measurement-units

Email: info@ericcointernational.com

Whatsapp: 13630231561

WeChat13992884879



Tilt Sensors for Monitoring Hydropower Stations and DAMS



 Tilt sensors can be used for hydropower station and dam monitoring.

The safety of hydropower DAMS not only directly affects the power plant's own benefits, but also closely related to the lives and property of downstream people, national economic development and ecological environment. With the development of electronic technology and the popularization and application of digital communication technology, it provides the guarantee for monitoring automation. At present, the dam monitoring automation of the national power system has been fully carried out, and it is developing in the direction of network and intelligence.

(1) Deformation monitoring

Dam deformation is an important monitoring project for hydropower DAMS. It can also be divided into horizontal displacement and vertical displacement 2 subterms. Most DAMS are equipped with horizontal and vertical displacement observation, usually one pair of measurement points per dam section. In recent years, more attention has been paid to the horizontal displacement observation of typical dam section. Generally, more than 3 measuring points are arranged along the dam height.

Dam deformation monitoring equipment can choose tension line, GPS, fixed inclinometer, ER-TS-3160VO tilt sensor, static level, etc.

(2) Seepage

Dam seepage is also one of the important monitoring projects of hydropower DAMS. It can also be divided into two sub-terms: osmotic pressure and osmotic flow. The observation facilities of concrete dam are located in the foundation corridor, and the lifting pressure is measured at one point for each dam section. The seepage flow measurement point is determined according to the water collection situation of the drainage ditch, and can generally measure the regional flow and the total amount. The seepage rate of earth-rock dam is observed at the seepage point at the toe of dam, and the seepage pressure measurement point is arranged under the dam body infiltration line or behind the toe plate according to the specific dam type. In addition, the slopes of the left and right banks of the dam have been set up to observe the water table in order to monitor the seepage around the dam. Seepage monitoring of dam mainly adopts osmometer as testing equipment.

(3) Vipassana items such as stress and strain

Dam stress and strain and other internal observation items are general observation items of hydropower DAMS. Only some critical observation points are included in automatic monitoring, and many middle and low DAMS have stopped measuring or sealed up such observation items. In the dam construction stage, the stress and strain internal observation items are widely used, and the commonly used monitoring equipment include embedded strain gauge and steel bar gauge.

If you want to learn more about tilt sensors or buy

Please contact me in the following ways:

Email: info@ericcointernational.com

Whatsapp: 173 9198 8506

The Structure of Accelerometer

 


An accelerometer is an instrument that measures acceleration. Acceleration measurement is an important subject in engineering technology. When the object has a large acceleration, the object and the instruments and equipment carried by it and other objects without relative acceleration are subjected to forces that can produce the same large acceleration, that is, dynamic loads. To know the dynamic load, you need to measure the acceleration. Secondly, to know the spatial position of the instantaneous aircraft, rockets and ships, its acceleration can be measured continuously through inertial navigation , and then the velocity component is obtained through integral calculation, and the position coordinate signal is obtained by integrating again.

The components of common accelerometers are as follows: housing (fixed to the measured object), reference quality, sensitive components, signal output devices, etc. Accelerometers require a certain amount of range and accuracy, sensitivity, etc. These requirements are often somewhat contradictory.

Accelerometers based on different principles have different ranges (from several g to hundreds of thousands of g), and their sensitivities to catastrophic acceleration frequencies are also different. Common accelerometers are based on the following principles:

1.The reference mass is connected to the housing by a spring . The relative displacement between the housing and the housing reflects the magnitude of the acceleration component. This signal is output via the potentiometer as a voltage.

2.The reference mass is fixed by the elastic thin rod and the shell, the dynamic load caused by acceleration deforms the rod, the strain resistance wire senses the size of the deformation, and its output is an electrical signal proportional to the size of the acceleration sub-disk.

3.The reference mass is fixedly connected to the housing through the piezoelectric element. The dynamic load of the mass exerts pressure on the piezoelectric element. The piezoelectric element outputs an electrical signal proportional to the pressure, that is, the acceleration component.

The accelerometer for measuring aircraft overload was one of the first aircraft instruments to be used. They are also commonly used in aircraft to monitor engine failure and fatigue damage to aircraft structures. Accelerometer is an important tool to study the flutter and fatigue life of various aircraft in flight test. In inertial navigation system, high precision accelerometer is one of the most basic sensitive elements. The performance of accelerometers in different applications is very different. The high precision inertial navigation system requires the resolution of accelerometers up to 0.001g, but the range is not large. The accelerometer for measuring aircraft overload may require a range of 10g, but the accuracy is not high. Therefore, Ericco designed ER-QA-03A high performance quartz accelerometer and ER-QA-01A aerospace quartz for the application characteristics in this field The characteristics of accelerometer are: ER-QA-03A’s bias repeatability is 10-50μg,scale factor repeatability is 15-50 PPM and class II non-linearity repeatability is 10-30μg/g2. ER-QA-01A’s bias repeatability is 10μg,scale factor repeatability is 10 PPM and class II non-linearity repeatability is 10μg/g².

From this, we can simply understand the definition, structure and application of the accelerometer in aircraft overload, if you want to know more about the accelerometer related knowledge. Please click here,get more https://www.ericcointernational.com/accelerometer

Email : info@ericcointernational.com     

Tuesday, November 28, 2023

Selecting an Inertial Measurement Unit (IMU) for UAV Applications

An inertial measurement unit (IMU) is an electronic device that uses accelerometers and gyroscopes to measure acceleration and rotation and can be used to provide position data.

IMUs are an important component of unmanned aerial systems (UAVs, UAS, and drones) and common applications include control and stabilization, guidance and correction, measurement and testing, and mobile mapping.

Raw measurements output from an IMU (angular rate, linear acceleration, and magnetic field strength) or AHRS (roll, pitch, and yaw) can be fed into devices such as an inertial navigation system (INS) to calculate relative position, direction, and speed to help UAV navigation and control.

IMUs are manufactured with a wide range of features, parameters and specifications, so the most suitable choice will depend on the requirements of the specific drone application. This article outlines some of the key options and considerations when selecting an IMU for drone applications, such as underlying technology, performance, and durability.

There are many types of IMUs, some of which incorporate magnetometers to measure magnetic field strength, but the four main technology categories for drone applications are: silicon MEMS (microelectromechanical systems), quartz MEMS, FOG (fiber optic gyroscopes), and RLG (Ring Laser Gyroscope).

Silicon MEMS IMUs are based on tiny sensors that measure the deflection of a mass due to motion, or the force required to hold the mass in place. They typically have higher noise, vibration sensitivity, and instability parameters than FOG IMUs, but as technology continues to advance, MEMS-based IMUs are becoming more accurate.

MEMS IMUs are well suited for small UAV platforms and high-volume production units because they can often be manufactured at smaller size and weight and at lower cost. The tactical-grade ER-MIMU03 and ER-MIMU07 developed by Ericco can be widely used on UAVs. If you want to know more about IMU products, please click the link below to contact us.

Web:https://www.ericcointernational.com/inertial-measurement-units

Email: info@ericcointernational.com

Whatsapp: 13630231561

WeChat:13992884879



Choose a suitable IMU to make your drone flight more stable and safe

         As one of the core components of drones, IMU plays an irreplaceable role. Its high precision, fast response and freedom from extern...