System reference differences
The measurement reference system chosen by AHRS is the earth itself, and the location of its measurement object is also a specific geographical location. The inertial measurement unit is different in that it measures position and motion relative to a specific inertial reference frame, which can be a fixed point such as a house, building, or a uniform motion system. Conceptually, inertial units of measurement are more widely applicable because the reference point of the AHRS, the Earth, is also an inertial reference frame (not absolute, just the Earth). using the Sun as the inertial reference frame in the solar system).
System composition difference
Although the measuring elements of AHRS and IMU are basically the same, due to the different reference systems of AHRS, AHRS has more electronic compass than inertial measurement unit. When AHRS monitors motion trajectories and status, due to the time drift problem of the gyroscope, when integrating the rotation angle during motion, the error will become larger and larger as time goes by. Therefore, an electronic compass is needed to calibrate the geographical azimuth of movement in time.
The main difference between an inertial measurement unit and an AHRS is the addition of an onboard processing system to an AHRS, which provides attitude and heading information, whereas an inertial measurement unit only transmits sensor data to additional equipment that calculates attitude and heading. In addition to attitude determination, AHRS can also form part of an inertial navigation system.
Nonlinear estimation forms such as the extended Kalman filter are often used to compute solutions from these multiple sources.
AHRS has proven to be highly reliable and is commonly used on commercial and business aircraft. AHRS is typically integrated with the electronic flight instrument system (EFIS), which is a core part of the so-called glass cockpit and forms the primary flight display. AHRS can be combined with an air data computer to form the Air Data, Attitude and Heading Reference System (ADAHRS), which provides additional information such as airspeed, altitude and outside air temperature.
Scope of application
AHRS is not as widely used as inertial measurement unit due to its choice of reference system. For example, the ER-MIMU-01 developed by Ericco uses high-quality and reliable MEMS accelerometers and gyroscopes. It communicates with the outside via RS422. The baud rate can be flexibly set between 9600 and 921600. The communication baud required by the user is set through the communication protocol. Rate. Its application fields are relatively wide, and can be widely used in pointing, steering and guidance in advanced mining/drilling equipment, initial alignment of weapons/drone launch systems, direction pointing and tracking in satellite antennas and target tracking systems, Precision attitude and position measurement in navigation-grade MEMS IMU/INS, north-seeking positioning in geodesy/land mobile mapping systems, oil exploration, bridges, high-rise buildings, towers, dam monitoring, geotechnical monitoring, mining and many other fields. AHRS usually uses sensors such as electronic compasses to be used in aviation flight measurement, ground motor vehicle remote control, drone tracking and other fields. Since inertial measurement unit has a flexible reference system, inertial measurement is often used in oil exploration, drilling and production systems, mobile surveying and mapping systems, and attitude reference systems for vehicle and ship attitude measurement.
If you want to know more about imu's products, please click the link below to contact us, and we will have professional personnel connect with you.
Web:https://www.ericcointernational.com/inertial-measurement-units
Email: info@ericcointernational.com
Whatsapp: 13630231561
WeChat:13992884879
No comments:
Post a Comment