Wednesday, February 22, 2023

Introduction of North Seeking MEMS IMU — ER-MIMU-01 and ER-MIMU-05

 


High Precision Stable-control MEMS IMU

Ericco released new products MEMS North Seeking IMU, ER-MIMU-01 and ER-MIMU-05 . They have the following common features:

ER-MIMU-03 ER-MIMU-07

ER-MIMU-01                      ER-MIMU-05

3-axis gyro & 3-axis accelerometer;

Measuring range 100% /s;

Gyro bias instability: 0.02/h

Gyro bias stability(10s l0)<0.1/h;

5V power supply, low power consumption of 1.0W;

Operate Temp: -45℃~+85℃;

RS422 bus communication.

They can be applied to the following fields:

Construction machinery dip angle measurement, angle control, pylon operation monitoring, medical equipment angle control, satellite antenna star search, bridge, tall building, tower, dam monitoring and rock and soil monitoring, mining, attitude/heading reference system, integrated inertial navigation.

The above information about north seeking MEMS IMU is provided by our engineers. If you want to get the quotation and more technical data, please feel free to contact us.

Wednesday, February 8, 2023

MEMS Closing The Gap Between Price And Performance

 


Micro-electromechanical systems (MEMS) have made rapid advances since their introduction in the 1950s. Made of tiny integrated circuits and silicon-based microelectronics, the technology has dramatically revolutionized industrial and consumer electronics alike. For inertial measurement units and inertial navigation systems, MEMS technology saw the creation of a variety of inertial sensors, including gyroscopes, accelerometers, and magnetometers.

By far, the main benefit of MEMS is its extremely low cost compared to its FOG counterparts, usually by a factor of more than 10. The use of less expensive materials, advanced manufacturing processes, smaller sizes, and mass adoption, have all contributed to MEMS being cheaper to produce. Today, it is widely used in applications ranging from in-car GPS, drones, or camera pointing, where FOG technology is simply too cost-prohibitive to make commercial sense.

MEMS devices are also very small and lightweight, allowing them to be used in tight spaces such as smartphones and toys. MEMS are now found everywhere, from consumer to industrial-grade applications in a wide range of industries. This small form factor notably fuelled the adoption of MEMS in the drone surveying market, notably LiDAR surveying, where a higher degree of accuracy is needed while remaining relatively small and lightweight in order to fit on a drone. By contrast, FOGs are considerably larger and heavier, thus reducing the number of suitable applications.

MEMS are also less power-hungry than FOGs, allowing for longer mission times for energy-constrained vehicles. Combined with their small size and lightweight properties, MEMS is the solution of choice for many unmanned vehicles that require the lowest SWaP-C (size, weight, power, and cost).

MEMS though is not without its limitations. Due to their mechanical nature and components vibrating at a high frequency, MEMS are more sensitive to vibrations, especially at harmonic frequencies. Vibrations can increase the noise of a sensor’s output signal, causing a bias that needs to be corrected via software.

This issue can have some practical consequences. A non-negligible number of drone gyroscopes have been found to have resonant frequencies in both the audible and ultrasonic frequency ranges, making them vulnerable to loudspeaker noises. Therefore, it is possible to crash a drone at distance via a “sonic attack” using speakers set at the right frequency.

MEMS are also typically prone to g-sensitivity errors in gyroscope measurements due to linear acceleration, leading to large biases directly affecting the accuracy of attitude estimation in an INS. While acceleration is often short – just a few seconds – but intense – 5g or more in highly-dynamic fields such as unmanned aerial vehicles, the accumulation of errors over time cannot be neglected, and need to be compensated for. Corrections are done at the filter level but add another degree of complexity that FOG alternatives are less susceptible to.

We are a North-Seeking MEMS IMU supplier. If you are interested in our products, please contact us now!

Sunday, January 15, 2023

Come and Buy High-Quality FOG INS

 


Low Cost FOG INS

Do you know what INS is? Ericco provides FOG ins and MEMS ins solutions, which can be customized according to user needs. At present, our ER-FINS-70 low cost fog INS has been in hot sale. It is mainly composed of three solid fiber optic gyroscopes, three quartz flexible accelerometers, data packing plates, body structural parts and related software. It can measure the angular velocity and linear acceleration of the carrier motion; performs the error compensation of temperature, installation misalignment angle, non-linearity and zero position etc.; Automatically searches and outputs true north heading; provides three-dimensional attitude; provides information for carrier attitude and navigation control and the measurement result is output through RS422 serial interface. If you want to know more technical data and quotations, please feel free to contact us.

Monday, December 26, 2022

High Performance Dynamic FOG North Seeker

 ER-FNS-01 High Performance Dynamic FOG North Seeker (0.02°-0.5°)

 

Introduction

 

ER-FNS-01 High Performance Dynamic FOG North Seeker (0.02°-0.5°) consists of high precision, rugged solid FOG, quartz accelerometer, data acquisition and processing unit. It can provide its true north position information when the carrier moves. At the same time, the information of motion attitude, velocity and position of the carrier can also be displayed. This dynamic north seeker is suitable for static and dynamic initial alignment of missile launch, weapon aiming, direction control of radar, antenna and land surveying and mapping.

 

https://www.ericcointernational.com/north-finders/fiber-optic-gyro-north-finder/dynamic-fiber-optic-gyro-north-finder.html

 

Applications

 

North seeker

 

Navigation and control

 

Attitude reference system

 


Guidance

 

Vehicle and ship attitude measurement

 

Integrated inertial/satellite navigation system

 

Drilling and production system

 

Mobile mapping system

 

On-the-move

Specifications

Parameters

ER-FNS-01A

ER-FNS-01B

ER-FNS-01C

ER-FNS-01D

Outline dimension (mm)

248×248×180

248×248×180

248×248×180

248×248×180

Weight (kg)

20Kg

18Kg

15Kg

15Kg

Power supply

AC220V, 50Hz/AC110V, 60Hz/DC18V~36V

Power consumption

≤50W

≤50W

≤50W

≤50W

Start time

3min

3min

3min

3min

Latitude

-70°~+70°

-70°~+70°

-70°~+70°

-70°~+70°

North seeking precision

0.02°secψ

0.06°secψ

0.1°secψ

0.5°secψ

North seeking time

5min

5min

3min

3min

Roll pitch accuracy

0.02°

0.06°

0.1°

0.5°

Heading measurement range

-65°~+65°

-65°~+65°

-65°~+65°

-65°~+65°

Roll pitch measurement range

0°~360°

0°~360°

0°~360°

0°~360°

Positional accuracy

0.8nm/h

1.2nm/h

1.5nm/h

2nm/h

Output mode

RS422

RS422

RS422

RS422

Working temperature

-40℃~+60℃

-40℃~+60℃

-40℃~+60℃

-40℃~+60℃

Vibration environment

20Hz~2000Hz, 6.06g

Impact environment

8ms~11ms, 30g

8ms~11ms, 30g

8ms~11ms, 30g

8ms~11ms, 30g

 

FAQ:

 

1. What are the quotation methods?

 

If you have DHL or Fedex account, we can quote EXW price, otherwise CIF or FOB price.

 

2. Are there any discounts?

 

After we submit the sample price, if more quantity is needed, we will quote the bulk price.

 

3. How long will it take to deliver the goods after placing the order?

 

For sensors, parts and modules: in stock-one week; no stock-2-4 weeks; For systems, generally, 8-12 weeks.

 

4. How to deal with the quality problems?

 

After confirming that the product has quality problems, we will replace it for you free of charge in the shortest possible time.

 

If interested in High Performance Dynamic FOG North Finder, pls contact us: info@ericcointernational.com

Wednesday, April 13, 2022

Application of ER-MG2–100 (0.02°/h) High Precision MEMS Gyroscope

 


The ER-MG2–100 is a micromachined single-axis gyro sensor. ER-MG2–100 provides highly accurate north-seeking angular rate (gyroscope) measurement with market-leading low power consumption, the bias stability (Allan variance) is only 0.02°/h, and the Bias stability (1σ 10s) is only is 0.1°/h. The ER-MG2–100 is optimized for high accuracy and stability. ER-MG2–100 is designed for north-seeking, advanced differential sensor design rejects the influence of linear acceleration. Angular rate data is presented as a 24-bit word.


Friday, April 1, 2022

Application of Optical Fiber Gyroscope

The fiber optic gyroscope is an instrument that can accurately determine the position of a moving object. It is an inertial navigation instrument widely used in modern aviation, navigation, aerospace, and defense industries. The fiber optic gyroscope is a sensitive element based on the optical fiber coil, and the light emitted by the laser diode propagates along with the optical fiber in two directions. The difference in light propagation path determines the angular displacement of the sensitive element. Compared with traditional mechanical gyroscopes, fiber optic gyroscopes have the advantages of all-solid-state, no rotating parts and friction parts, long life, large dynamic range, instant start, simple structure, small size, and lightweight. Compared with laser gyroscopes, fiber optic gyroscopes do not have the problem of blocking and do not need to precisely process the optical path from the quartz block, and the cost is relatively low.

Double Axis FOG Gyroscope

The realization of the fiber optic gyroscope is mainly based on the Segnik theory: when the beam travels in a circular channel if the circular channel itself has a rotation speed, then the time required for the light to travel along the channel’s rotation direction is longer than that along the channel. It takes more time to rotate in the opposite direction. That is to say, when the optical loop rotates, in different traveling directions, the optical path of the optical loop will change relative to the optical path of the loop when the loop is stationary. Using this change in the optical path to detect the phase difference between the two optical paths or the change in interference fringes, the rotational angular velocity of the optical path can be measured. This is the working principle of the fiber optic gyroscope. “The characteristics of fiber optic gyroscopes: low energy consumption, long lifespan, and strong reliability. It is also the characteristics of fiber optic gyroscopes that determine it has always been dominant in strategic gyroscopes. This is also an important reason why ERICCO has been committed to promoting the development of FOG.” The CEO of ERICCO said.

The application of fiber optic gyroscope is very wide:

1. Navigational applications Compass is important navigation equipment for ships, mainly including the magnetic compass and gyrocompass. With the development of fiber optic gyroscope technology and the improvement of commercialization, fiber optic gyroscopes have become a new member of marine navigation equipment and are used in commercial and military ships and marine equipment. The fiber optic gyroscope compass based on strapdown inertial navigation system has its rotation axis corresponding to the three axes of the ship’s coordinate system. It can not only be used as a high-precision heading information source to realize automatic north finding and pointing, but also can be obtained Reliable data such as the rate of heading rotation, the angle of roll and pitch, and the rate of rotation of the heading further promote the automated development of ships, ensuring the ship’s maneuvering effects and ensuring the safety of navigation.

2. Aerospace and space applications In aerospace and space applications, high-precision interferometric fiber optic gyroscopes are generally used. IFOG is the strapdown inertial navigation system of the main inertial element, which can provide the aircraft with three-dimensional angular velocity, position, angle of attack, and sideslip angle, and realize the tracking and measurement of a rocket launch. It can also be used for space vehicle stabilization, photography/surveying, mapping, attitude measurement control, motion compensation, EO/FLIR stabilization, navigation and flight control, etc. Among them, the high-precision, high-reliability fiber optic gyroscope, and GPS combined attitude determination has become a spacecraft at home and abroad The typical configuration of the posture system. Like ERICCO’s ER-FOG851, is designed with the concept of traditional fiber optic gyroscope and adopts matured fiber optic gyroscope manufacturing technology. It owns characteristics of small volume, lightweight, low power consumption, fast start-up, simple operation and convenient to use, etc.

3. Military applications The fiber optic gyroscope has a wide range of military applications due to its superiority in angular rate and acceleration measurement and its significant advantages in dynamic range, sensitivity, and reliability. It can be used for positioning, orientation, and navigation of tanks, submarines, self-propelled artillery, and armored assault vehicles; when satellite navigation is in strong electronic interference and cannot obtain accurate information, fiber optic gyros can be used to ensure autonomous navigation, precise guidance and accurate hitting of the target. At the same time, the FOG component is also an important part of the aviation fire control system, which can be used to stabilize the sightline and firing line of weapon systems such as armed helicopters, ensuring that the weapon can search, aim, track and shoot in motion. In addition, the fiber optic gyroscope is also the only effective navigation technology underwater, which can be used for positioning, orientation, and navigation of submarines.

4. Civilian applications In the civil field, it mainly focuses on the application of low- and medium-precision fiber optic gyroscopes. The main applications are automatic navigation, positioning and orientation of ground vehicles, vehicle control; attitude control of agricultural aircraft, sowing and spraying pesticides; in underground engineering maintenance, looking for damage Positioning tools and rescue tools for the position of power lines, pipelines and communication optical (electric) cables; used for geodetic surveying, mineral exploration, petroleum exploration, oil drilling steering, tunnel construction, etc. positioning and path survey, and the use of optical fiber gyro rotation angle And linear displacement to achieve dam inclination measurement and so on. Due to its high cost, its use still has great limitations. Beixun has developed cost-effective fiber optic gyroscope products in response to this problem, which has also promoted the rapid development of my country’s high-precision industry.

Ericco is an industry leader with rich product experience in the field of optical fiber gyroscopes. If you want more details about our products, you can log in to https://www.ericcointernational.com/.

FOG North Seeker

MEMS North Seeker

Land Positioning and Orientation System

mining north finder

mining north seeker

MEMS Inertial navigation system

inertial survey system

integrated navigation system

Attitude Heading Reference System (AHRS)

gyro theodolite

digital compass

electronic compass

tilt sensor

inclination sensor

High-precision IMU is coming to help in the fields of land, sea and air

  High-precision IMU is now widely used in many fields of sea, land and air. It can provide real-time and accurate information on the carrie...